Reply to ‘Heterogeneity of TP53 mutations necessitates differentiation with p53-rescue therapies’

Peuget, S., Zhou, X. & Selivanova, G. Translating p53-based therapies for cancer into the clinic. Nat. Rev. Cancer 24, 192–215 (2024).

Article  CAS  PubMed  Google Scholar 

Wu, J., Song, H., Xiao, S. & Lu, M. Heterogeneity of p53 mutations necessitates differentiation with p53-rescue therapies. Nat. Rev. Cancer https://doi.org/10.1038/s41568-025-00826-7 (2025).

Article  PubMed  Google Scholar 

Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 15, 13–30 (2018).

Article  CAS  PubMed  Google Scholar 

Lambert, J. M. R. et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376–388 (2009).

Article  CAS  PubMed  Google Scholar 

Degtjarik, O. et al. Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Nat. Commun. 12, 7057 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Funk, J. S. et al. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat. Genet. 57, 140–153 (2025).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palomar-Siles, M. et al. Translational readthrough of nonsense mutant TP53 by mRNA incorporation of 5-Fluorouridine. Cell Death Dis. 13, 997 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao, S. et al. Characterization of the generic mutant p53-rescue compounds in a broad range of assays. Cancer Cell 42, 325–327 (2024).

Article  CAS  PubMed  Google Scholar 

Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365, 599–604 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, H. S. et al. Direct measurement of engineered cancer mutations and their transcriptional phenotypes in single cells. Nat. Biotechnol. 42, 1254–1262 (2024).

Article  CAS  PubMed  Google Scholar 

Redman-Rivera, L. N. et al. Acquisition of aneuploidy drives mutant p53-associated gain-of-function phenotypes. Nat. Commun. 12, 5184 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weissmueller, S. et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell 157, 382–394 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujihara, K. M. et al. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Sci. Adv. 8, eabm9427 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif