Peuget, S., Zhou, X. & Selivanova, G. Translating p53-based therapies for cancer into the clinic. Nat. Rev. Cancer 24, 192–215 (2024).
Article CAS PubMed Google Scholar
Wu, J., Song, H., Xiao, S. & Lu, M. Heterogeneity of p53 mutations necessitates differentiation with p53-rescue therapies. Nat. Rev. Cancer https://doi.org/10.1038/s41568-025-00826-7 (2025).
Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 15, 13–30 (2018).
Article CAS PubMed Google Scholar
Lambert, J. M. R. et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376–388 (2009).
Article CAS PubMed Google Scholar
Degtjarik, O. et al. Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Nat. Commun. 12, 7057 (2021).
Article CAS PubMed PubMed Central Google Scholar
Funk, J. S. et al. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat. Genet. 57, 140–153 (2025).
Article CAS PubMed PubMed Central Google Scholar
Palomar-Siles, M. et al. Translational readthrough of nonsense mutant TP53 by mRNA incorporation of 5-Fluorouridine. Cell Death Dis. 13, 997 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xiao, S. et al. Characterization of the generic mutant p53-rescue compounds in a broad range of assays. Cancer Cell 42, 325–327 (2024).
Article CAS PubMed Google Scholar
Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018).
Article CAS PubMed PubMed Central Google Scholar
Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365, 599–604 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kim, H. S. et al. Direct measurement of engineered cancer mutations and their transcriptional phenotypes in single cells. Nat. Biotechnol. 42, 1254–1262 (2024).
Article CAS PubMed Google Scholar
Redman-Rivera, L. N. et al. Acquisition of aneuploidy drives mutant p53-associated gain-of-function phenotypes. Nat. Commun. 12, 5184 (2021).
Article CAS PubMed PubMed Central Google Scholar
Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).
Article CAS PubMed PubMed Central Google Scholar
Weissmueller, S. et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell 157, 382–394 (2014).
Article CAS PubMed PubMed Central Google Scholar
Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).
Article CAS PubMed PubMed Central Google Scholar
Fujihara, K. M. et al. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Sci. Adv. 8, eabm9427 (2022).
Comments (0)