Massagué, J. & Sheppard, D. TGF-β signaling in health and disease. Cell 186, 4007–4037 (2023).
Article PubMed PubMed Central Google Scholar
Nixon, B. G., Gao, S., Wang, X. & Li, M. O. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat. Rev. Immunol. 23, 346–362 (2022).
Article PubMed PubMed Central Google Scholar
Batlle, E. & Massague, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).
Article CAS PubMed PubMed Central Google Scholar
Chen, J. et al. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 11, 1345–1363 (2021).
Article CAS PubMed PubMed Central Google Scholar
Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).
Moreau, J. M., Velegraki, M., Bolyard, C., Rosenblum, M. D. & Li, Z. Transforming growth factor-β1 in regulatory T cell biology. Sci. Immunol. 7, eabi4613 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tian, M. & Schiemann, W. P. The TGF-β paradox in human cancer: an update. Future Oncol. 5, 259–271 (2009).
Article CAS PubMed Google Scholar
Glick, A. B. et al. Loss of expression of transforming growth factor β in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl Acad. Sci. USA 90, 6076–6080 (1993).
Article CAS PubMed PubMed Central Google Scholar
Glick, A. B. et al. Targeted deletion of the TGF-β1 gene causes rapid progression to squamous cell carcinoma. Genes. Dev. 8, 2429–2440 (1994).
Article CAS PubMed Google Scholar
Korkut, A. et al. A pan-cancer analysis reveals high-frequency genetic alterations in mediators of signaling by the TGF-β superfamily. Cell Syst. 7, 422–437.e7 (2018).
Article CAS PubMed PubMed Central Google Scholar
Barcellos-Hoff, M. H. The radiobiology of TGFβ. Semin. Cancer Biol. 86, 857–867 (2022).
Article CAS PubMed Google Scholar
Teicher, B. A., Ikebe, M., Ara, G., Keyes, S. R. & Herbst, R. S. Transforming growth factor-β1 overexpression produces drug resistance in vivo: reversal by decorin. In Vivo 11, 463–472 (1997).
Teicher, B. A., Holden, S. A., Ara, G. & Chen, G. Transforming growth factor-β in in vivo resistance. Cancer Chemother. Pharmacol. 37, 601–609 (1996).
Article CAS PubMed Google Scholar
Liu, P., Menon, K., Alvarez, E., Lu, K. & Teicher, B. A. Transforming growth factor-β and response to anticancer therapies in human liver and gastric tumors in vitro and in vivo. Int. J. Oncol. 16, 599–610 (2000).
Ehrhart, E. J., Carroll, A., Segarini, P., Tsang, M. L.-S. & Barcellos-Hoff, M. H. Latent transforming growth factor-β activation in situ: quantitative and functional evidence following low dose irradiation. FASEB J. 11, 991–1002 (1997).
Article CAS PubMed Google Scholar
Barcellos-Hoff, M. H. & Dix, T. A. Redox-mediated activation of latent transforming growth factor-β1. Molec Endocrin 10, 1077–1083 (1996).
Barcellos-Hoff, M. H. Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 53, 3880–3886 (1993).
Vanpouille-Box, C. et al. Transforming growth factor (TGF) β is a master regulator of radiotherapy-induced anti-tumor immunity. Cancer Res. 75, 2232–2242 (2015).
Article CAS PubMed PubMed Central Google Scholar
Holmgaard, R. B. et al. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J. Immunother. Cancer 6, 47 (2018).
Article PubMed PubMed Central Google Scholar
Dodagatta-Marri, E. et al. α-PD-1 therapy elevates Treg/TH balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas. J. Immunother. Cancer 7, 62 (2019).
Article CAS PubMed PubMed Central Google Scholar
Lind, H. et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J. Immunother. Cancer 8, e000433 (2020).
Article PubMed PubMed Central Google Scholar
Martin, C. J. et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci. Transl. Med. 12, eaay8456 (2020).
Article CAS PubMed Google Scholar
Ciardiello, D., Elez, E., Tabernero, J. & Seoane, J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann. Oncol. 31, 1336–1349 (2020).
Article CAS PubMed Google Scholar
Anido, J. et al. TGF-β receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18, 655–668 (2010).
Article CAS PubMed Google Scholar
Rodon, J. et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–560 (2015).
Article CAS PubMed Google Scholar
Wick, A. et al. Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-β receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest. N. Drugs 38, 1570–1579 (2020).
Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).
Article CAS PubMed Google Scholar
Huang, C.-Y. et al. Recent progress in TGF-β inhibitors for cancer therapy. Biomed. Pharmacother. 134, 111046 (2021).
Article CAS PubMed Google Scholar
Metropulos, A. E., Munshi, H. G. & Principe, D. R. The difficulty in translating the preclinical success of combined TGFβ and immune checkpoint inhibition to clinical trial. eBioMedicine 86, 104380 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35 (2010).
Article CAS PubMed PubMed Central Google Scholar
Lohaus, F. et al. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiother. Oncol. 113, 317–323 (2014).
Comments (0)