Revisiting the TGFβ paradox: insights from HPV-driven cancer and the DNA damage response

Massagué, J. & Sheppard, D. TGF-β signaling in health and disease. Cell 186, 4007–4037 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Nixon, B. G., Gao, S., Wang, X. & Li, M. O. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat. Rev. Immunol. 23, 346–362 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Batlle, E. & Massague, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, J. et al. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 11, 1345–1363 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

Article  PubMed  Google Scholar 

Moreau, J. M., Velegraki, M., Bolyard, C., Rosenblum, M. D. & Li, Z. Transforming growth factor-β1 in regulatory T cell biology. Sci. Immunol. 7, eabi4613 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, M. & Schiemann, W. P. The TGF-β paradox in human cancer: an update. Future Oncol. 5, 259–271 (2009).

Article  CAS  PubMed  Google Scholar 

Glick, A. B. et al. Loss of expression of transforming growth factor β in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl Acad. Sci. USA 90, 6076–6080 (1993).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glick, A. B. et al. Targeted deletion of the TGF-β1 gene causes rapid progression to squamous cell carcinoma. Genes. Dev. 8, 2429–2440 (1994).

Article  CAS  PubMed  Google Scholar 

Korkut, A. et al. A pan-cancer analysis reveals high-frequency genetic alterations in mediators of signaling by the TGF-β superfamily. Cell Syst. 7, 422–437.e7 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barcellos-Hoff, M. H. The radiobiology of TGFβ. Semin. Cancer Biol. 86, 857–867 (2022).

Article  CAS  PubMed  Google Scholar 

Teicher, B. A., Ikebe, M., Ara, G., Keyes, S. R. & Herbst, R. S. Transforming growth factor-β1 overexpression produces drug resistance in vivo: reversal by decorin. In Vivo 11, 463–472 (1997).

CAS  PubMed  Google Scholar 

Teicher, B. A., Holden, S. A., Ara, G. & Chen, G. Transforming growth factor-β in in vivo resistance. Cancer Chemother. Pharmacol. 37, 601–609 (1996).

Article  CAS  PubMed  Google Scholar 

Liu, P., Menon, K., Alvarez, E., Lu, K. & Teicher, B. A. Transforming growth factor-β and response to anticancer therapies in human liver and gastric tumors in vitro and in vivo. Int. J. Oncol. 16, 599–610 (2000).

CAS  PubMed  Google Scholar 

Ehrhart, E. J., Carroll, A., Segarini, P., Tsang, M. L.-S. & Barcellos-Hoff, M. H. Latent transforming growth factor-β activation in situ: quantitative and functional evidence following low dose irradiation. FASEB J. 11, 991–1002 (1997).

Article  CAS  PubMed  Google Scholar 

Barcellos-Hoff, M. H. & Dix, T. A. Redox-mediated activation of latent transforming growth factor-β1. Molec Endocrin 10, 1077–1083 (1996).

CAS  Google Scholar 

Barcellos-Hoff, M. H. Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 53, 3880–3886 (1993).

CAS  PubMed  Google Scholar 

Vanpouille-Box, C. et al. Transforming growth factor (TGF) β is a master regulator of radiotherapy-induced anti-tumor immunity. Cancer Res. 75, 2232–2242 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holmgaard, R. B. et al. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J. Immunother. Cancer 6, 47 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Dodagatta-Marri, E. et al. α-PD-1 therapy elevates Treg/TH balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas. J. Immunother. Cancer 7, 62 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lind, H. et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J. Immunother. Cancer 8, e000433 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Martin, C. J. et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci. Transl. Med. 12, eaay8456 (2020).

Article  CAS  PubMed  Google Scholar 

Ciardiello, D., Elez, E., Tabernero, J. & Seoane, J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann. Oncol. 31, 1336–1349 (2020).

Article  CAS  PubMed  Google Scholar 

Anido, J. et al. TGF-β receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18, 655–668 (2010).

Article  CAS  PubMed  Google Scholar 

Rodon, J. et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–560 (2015).

Article  CAS  PubMed  Google Scholar 

Wick, A. et al. Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-β receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest. N. Drugs 38, 1570–1579 (2020).

Article  CAS  Google Scholar 

Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).

Article  CAS  PubMed  Google Scholar 

Huang, C.-Y. et al. Recent progress in TGF-β inhibitors for cancer therapy. Biomed. Pharmacother. 134, 111046 (2021).

Article  CAS  PubMed  Google Scholar 

Metropulos, A. E., Munshi, H. G. & Principe, D. R. The difficulty in translating the preclinical success of combined TGFβ and immune checkpoint inhibition to clinical trial. eBioMedicine 86, 104380 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lohaus, F. et al. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiother. Oncol. 113, 317–323 (2014).

Article  CAS  PubMed 

Comments (0)

No login
gif