Biosurfactant biosynthesis by Alcanivorax borkumensis and its role in oil biodegradation

Yakimov, M. M., Bargiela, R. & Golyshin, P. N. Calm and frenzy: marine obligate hydrocarbonoclastic bacteria sustain ocean wellness. Curr. Opin. Biotechnol. 73, 337–345 (2022).

Article  CAS  PubMed  Google Scholar 

Yakimov, M. M. et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Bacteriol. 48, 339–348 (1998).

Article  CAS  PubMed  Google Scholar 

Kasai, Y. et al. Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environm. Microbiol. 4, 141–147 (2002).

Article  CAS  Google Scholar 

Rezaei Somee, M. et al. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Sci. Rep. 11, 11316 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lea-Smith, D. J. et al. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc. Natl Acad. Sci. USA 112, 13591–13596 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Love, C. R. et al. Microbial production and consumption of hydrocarbons in the global ocean. Nat. Microbiol. 6, 489–498 (2021).

Article  CAS  PubMed  Google Scholar 

Prasad, M. et al. Alcanivorax borkumensis biofilms enhance oil degradation by interfacial tubulation. Science 381, 748–753 (2023).

Article  CAS  PubMed  Google Scholar 

Cui, J. et al. The glycine-glucolipid of Alcanivorax borkumensis is resident to the bacterial cell wall. Appl. Environm. Microbiol. 88, e0112622 (2022).

Article  Google Scholar 

Zenati, B. et al. A non-toxic microbial surfactant from Marinobacter hydrocarbonoclasticus SdK644 for crude oil solubilization enhancement. Ecotoxicol. Environ. Saf. 154, 100–107 (2018).

Article  CAS  PubMed  Google Scholar 

Lan, L.-H., Zhao, H., Chen, J.-C. & Chen, G.-Q. Engineering Halomonas spp. as a low-cost production host for production of bio-surfactant protein PhaP. Biotechnol. J. 11, 1595–1604 (2016).

Article  CAS  PubMed  Google Scholar 

Karmainski, T. et al. High-quality physiology of Alcanivorax borkumensis SK2 producing glycolipids enables efficient stirred-tank bioreactor cultivation. Front. Bioeng Biotechnol. 11, 1325019 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Burger, M. M., Glaser, L. & Burton, R. M. The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J. Biol. Chem. 238, 2595–2602 (1963).

Article  CAS  PubMed  Google Scholar 

Ochsner, U. A., Fiechter, A. & Reiser, J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J. Biol. Chem. 269, 19787–19795 (1994).

Article  CAS  PubMed  Google Scholar 

Zhu, K. & Rock, C. O. RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl-β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J. Bacteriol. 190, 3147–3154 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahim, R. et al. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol. Microbiol. 40, 708–718 (2001).

Article  CAS  PubMed  Google Scholar 

Abbasi, A., Bothun, G. D. & Bose, A. Attachment of Alcanivorax borkumensis to hexadecane-in-artificial sea water emulsion droplets. Langmuir 34, 5352–5357 (2018).

Article  CAS  PubMed  Google Scholar 

Godfrin, M. P., Sihlabela, M., Bose, A. & Tripathi, A. Behavior of marine bacteria in clean environment and oil spill conditions. Langmuir 34, 9047–9053 (2018).

Article  CAS  PubMed  Google Scholar 

Katsuyama, Y. & Miyanaga, A. Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases. Curr. Opin. Chem. Biol. 71, 102223 (2022).

Article  CAS  PubMed  Google Scholar 

Denaro, R. et al. Alcanivorax borkumensis produces an extracellular siderophore in iron-limitation condition maintaining the hydrocarbon-degradation efficiency. Mar. Genomics 17, 43–52 (2014).

Article  CAS  PubMed  Google Scholar 

Schneiker, S. et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat. Biotechnol. 24, 997–1004 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999).

Article  CAS  PubMed  Google Scholar 

Challis, G. L., Ravel, J. & Townsend, C. A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224 (2000).

Article  CAS  PubMed  Google Scholar 

Hoffmann, D., Hevel, J. M., Moore, R. E. & Moore, B. S. Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene 311, 171–180 (2003).

Article  CAS  PubMed  Google Scholar 

May, J. J., Wendrich, T. M. & Marahiel, M. A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem. 276, 7209–7217 (2001).

Article  CAS  PubMed  Google Scholar 

Hojati, Z. et al. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem. Biol. 9, 1175–1187 (2002).

Article  CAS  PubMed  Google Scholar 

Pospiech, A., Bietenhader, J. & Schupp, T. Two multifunctional peptide synthetases and an O-methyltransferase are involved in the biosynthesis of the DNA-binding antibiotic and antitumour agent saframycin Mx1 from Myxococcus xanthus. Microbiology 142, 741–746 (1996).

Article  CAS  PubMed  Google Scholar 

Frueh, D. P. et al. Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454, 903–906 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Etchegaray, A., Silva-Stenico, M. E., Moon, D. H. & Tsai, S. M. In silico analysis of nonribosomal peptide synthetases of Xanthomonas axonopodis pv. citri: identification of putative siderophore and lipopeptide biosynthetic genes. Microbiol. Res. 159, 425–437 (2004).

Article  CAS  PubMed  Google Scholar 

Rausch, C., Hoof, I., Weber, T., Wohlleben, W. & Huson, D. H. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol. Biol. 7, 78 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Imker, H. J., Krahn, D., Clerc, J., Kaiser, M. & Walsh, C. T. N-Acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF. Chem. Biol. 17, 1077–1083 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif