Yakimov, M. M., Bargiela, R. & Golyshin, P. N. Calm and frenzy: marine obligate hydrocarbonoclastic bacteria sustain ocean wellness. Curr. Opin. Biotechnol. 73, 337–345 (2022).
Article CAS PubMed Google Scholar
Yakimov, M. M. et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Bacteriol. 48, 339–348 (1998).
Article CAS PubMed Google Scholar
Kasai, Y. et al. Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environm. Microbiol. 4, 141–147 (2002).
Rezaei Somee, M. et al. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Sci. Rep. 11, 11316 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lea-Smith, D. J. et al. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc. Natl Acad. Sci. USA 112, 13591–13596 (2015).
Article CAS PubMed PubMed Central Google Scholar
Love, C. R. et al. Microbial production and consumption of hydrocarbons in the global ocean. Nat. Microbiol. 6, 489–498 (2021).
Article CAS PubMed Google Scholar
Prasad, M. et al. Alcanivorax borkumensis biofilms enhance oil degradation by interfacial tubulation. Science 381, 748–753 (2023).
Article CAS PubMed Google Scholar
Cui, J. et al. The glycine-glucolipid of Alcanivorax borkumensis is resident to the bacterial cell wall. Appl. Environm. Microbiol. 88, e0112622 (2022).
Zenati, B. et al. A non-toxic microbial surfactant from Marinobacter hydrocarbonoclasticus SdK644 for crude oil solubilization enhancement. Ecotoxicol. Environ. Saf. 154, 100–107 (2018).
Article CAS PubMed Google Scholar
Lan, L.-H., Zhao, H., Chen, J.-C. & Chen, G.-Q. Engineering Halomonas spp. as a low-cost production host for production of bio-surfactant protein PhaP. Biotechnol. J. 11, 1595–1604 (2016).
Article CAS PubMed Google Scholar
Karmainski, T. et al. High-quality physiology of Alcanivorax borkumensis SK2 producing glycolipids enables efficient stirred-tank bioreactor cultivation. Front. Bioeng Biotechnol. 11, 1325019 (2023).
Article PubMed PubMed Central Google Scholar
Burger, M. M., Glaser, L. & Burton, R. M. The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J. Biol. Chem. 238, 2595–2602 (1963).
Article CAS PubMed Google Scholar
Ochsner, U. A., Fiechter, A. & Reiser, J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J. Biol. Chem. 269, 19787–19795 (1994).
Article CAS PubMed Google Scholar
Zhu, K. & Rock, C. O. RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl-β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J. Bacteriol. 190, 3147–3154 (2008).
Article CAS PubMed PubMed Central Google Scholar
Rahim, R. et al. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol. Microbiol. 40, 708–718 (2001).
Article CAS PubMed Google Scholar
Abbasi, A., Bothun, G. D. & Bose, A. Attachment of Alcanivorax borkumensis to hexadecane-in-artificial sea water emulsion droplets. Langmuir 34, 5352–5357 (2018).
Article CAS PubMed Google Scholar
Godfrin, M. P., Sihlabela, M., Bose, A. & Tripathi, A. Behavior of marine bacteria in clean environment and oil spill conditions. Langmuir 34, 9047–9053 (2018).
Article CAS PubMed Google Scholar
Katsuyama, Y. & Miyanaga, A. Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases. Curr. Opin. Chem. Biol. 71, 102223 (2022).
Article CAS PubMed Google Scholar
Denaro, R. et al. Alcanivorax borkumensis produces an extracellular siderophore in iron-limitation condition maintaining the hydrocarbon-degradation efficiency. Mar. Genomics 17, 43–52 (2014).
Article CAS PubMed Google Scholar
Schneiker, S. et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat. Biotechnol. 24, 997–1004 (2006).
Article CAS PubMed PubMed Central Google Scholar
Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999).
Article CAS PubMed Google Scholar
Challis, G. L., Ravel, J. & Townsend, C. A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224 (2000).
Article CAS PubMed Google Scholar
Hoffmann, D., Hevel, J. M., Moore, R. E. & Moore, B. S. Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene 311, 171–180 (2003).
Article CAS PubMed Google Scholar
May, J. J., Wendrich, T. M. & Marahiel, M. A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem. 276, 7209–7217 (2001).
Article CAS PubMed Google Scholar
Hojati, Z. et al. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem. Biol. 9, 1175–1187 (2002).
Article CAS PubMed Google Scholar
Pospiech, A., Bietenhader, J. & Schupp, T. Two multifunctional peptide synthetases and an O-methyltransferase are involved in the biosynthesis of the DNA-binding antibiotic and antitumour agent saframycin Mx1 from Myxococcus xanthus. Microbiology 142, 741–746 (1996).
Article CAS PubMed Google Scholar
Frueh, D. P. et al. Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454, 903–906 (2008).
Article CAS PubMed PubMed Central Google Scholar
Etchegaray, A., Silva-Stenico, M. E., Moon, D. H. & Tsai, S. M. In silico analysis of nonribosomal peptide synthetases of Xanthomonas axonopodis pv. citri: identification of putative siderophore and lipopeptide biosynthetic genes. Microbiol. Res. 159, 425–437 (2004).
Article CAS PubMed Google Scholar
Rausch, C., Hoof, I., Weber, T., Wohlleben, W. & Huson, D. H. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol. Biol. 7, 78 (2007).
Article PubMed PubMed Central Google Scholar
Imker, H. J., Krahn, D., Clerc, J., Kaiser, M. & Walsh, C. T. N-Acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF. Chem. Biol. 17, 1077–1083 (2010).
Comments (0)