Bassilana, F., Nash, M. & Ludwig, M. G. Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat. Rev. Drug Discov. 18, 869–884 (2019).
Article CAS PubMed Google Scholar
Bondarev, A. D. et al. Opportunities and challenges for drug discovery in modulating adhesion G protein-coupled receptor (GPCR) functions. Expert Opin. Drug Discov. 15, 1291–1307 (2020).
Article CAS PubMed Google Scholar
Hamann, J. et al. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharm. Rev. 67, 338–367 (2015).
Article CAS PubMed PubMed Central Google Scholar
Purcell, R. H. & Hall, R. A. Adhesion G protein-coupled receptors as drug targets. Annu. Rev. Pharmacol. Toxicol. 58, 429–449 (2018).
Article CAS PubMed Google Scholar
Paavola, K. J. & Hall, R. A. Adhesion G protein-coupled receptors: signaling, pharmacology, and mechanisms of activation. Mol. Pharmacol. 82, 777–783 (2012).
Article CAS PubMed PubMed Central Google Scholar
Xiao, P. et al. Tethered peptide activation mechanism of the adhesion GPCRs ADGRG2 and ADGRG4. Nature 604, 771–778 (2022).
Article CAS PubMed Google Scholar
Scholz, N. et al. Molecular sensing of mechano- and ligand-dependent adhesion GPCR dissociation. Nature 615, 945–953 (2023).
Article CAS PubMed Google Scholar
Mitgau, J. et al. The N terminus of adhesion G protein-coupled receptor GPR126/ADGRG6 as allosteric force integrator. Front. Cell Dev. Biol. 10, 873278 (2022).
Article PubMed PubMed Central Google Scholar
Liebscher, I., Schoneberg, T. & Thor, D. Stachel-mediated activation of adhesion G protein-coupled receptors: insights from cryo-EM studies. Signal Transduct. Target. Ther. 7, 227 (2022).
Article PubMed PubMed Central Google Scholar
Kuffer, A. et al. The prion protein is an agonistic ligand of the G protein-coupled receptor ADGRG6. Nature 536, 464–468 (2016).
Article CAS PubMed PubMed Central Google Scholar
Diamantopoulou, E. et al. Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 (gpr126) mutant. eLife 8, e44889 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ping, Y. Q. et al. Structural basis for the tethered peptide activation of adhesion GPCRs. Nature 604, 763–770 (2022).
Article CAS PubMed Google Scholar
Lin, H. et al. Structures of the ADGRG2–Gs complex in apo and ligand-bound forms. Nat. Chem. Biol. 18, 1196–1203 (2022).
Article CAS PubMed Google Scholar
An, W. et al. Progesterone activates GPR126 to promote breast cancer development via the Gi pathway. Proc. Natl Acad. Sci. USA 119, e2117004119 (2022).
Article CAS PubMed PubMed Central Google Scholar
Sun, Y. et al. Optimization of a peptide ligand for the adhesion GPCR ADGRG2 provides a potent tool to explore receptor biology. J. Biol. Chem. 296, 100174 (2021).
Article CAS PubMed Google Scholar
Mao, C. et al. Conformational transitions and activation of the adhesion receptor CD97. Mol. Cell 84, 570–583 (2024).
Article CAS PubMed Google Scholar
Ping, Y. Q. et al. Structures of the glucocorticoid-bound adhesion receptor GPR97–Go complex. Nature 589, 620–626 (2021).
Article CAS PubMed Google Scholar
Paavola, K. J., Sidik, H., Zuchero, J. B., Eckart, M. & Talbot, W. S. Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci. Signal. 7, ra76 (2014).
Article PubMed PubMed Central Google Scholar
Petersen, S. C. et al. The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85, 755–769 (2015).
Article CAS PubMed PubMed Central Google Scholar
Liu, D. et al. CD97 promotes spleen dendritic cell homeostasis through the mechanosensing of red blood cells. Science 375, eabi5965 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kenakin, T. & Christopoulos, A. Measurements of ligand bias and functional affinity. Nat. Rev. Drug Discov. 12, 483 (2013).
Article CAS PubMed Google Scholar
Wootten, D., Christopoulos, A. & Sexton, P. M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat. Rev. Drug Discov. 12, 630–644 (2013).
Article CAS PubMed Google Scholar
Peterson, S. M. et al. Discovery and design of G protein-coupled receptor targeting antibodies. Expert Opin. Drug Discov. 18, 417–428 (2023).
Article CAS PubMed Google Scholar
Zhang, D. L. et al. Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility. eLife 7, e33432 (2018).
Article PubMed PubMed Central Google Scholar
Davies, B. et al. Targeted deletion of the epididymal receptor HE6 results in fluid dysregulation and male infertility. Mol. Cell. Biol. 24, 8642–8648 (2004).
Article CAS PubMed PubMed Central Google Scholar
Yang, B. et al. Pathogenic role of ADGRG2 in CBAVD patients replicated in Chinese population. Andrology 5, 954–957 (2017).
Article CAS PubMed Google Scholar
Yuan, P. et al. Expanding the phenotypic and genetic spectrum of Chinese patients with congenital absence of vas deferens bearing CFTR and ADGRG2 alleles. Andrology 7, 329–340 (2019).
Article CAS PubMed Google Scholar
Rutkowski, K., Sowa, P., Rutkowska-Talipska, J., Kuryliszyn-Moskal, A. & Rutkowski, R. Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs 74, 1195–1207 (2014).
Article CAS PubMed Google Scholar
Savineau, J. P., Marthan, R. & Dumas de la Roque, E. Role of DHEA in cardiovascular diseases. Biochem. Pharmacol. 85, 718–726 (2013).
Article CAS PubMed Google Scholar
Jankowski, C. M. et al. Sex-specific effects of dehydroepiandrosterone (DHEA) on bone mineral density and body composition: a pooled analysis of four clinical trials. Clin. Endocrinol. 90, 293–300 (2019).
Alexaki, V. I. et al. DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA–Akt1/2–CREB–Jmjd3 pathway. Mol. Psychiatry 23, 1410–1420 (2018).
Comments (0)