A new Tec family-based clinical model predicts survival in differentiated thyroid cancer patients via machine learning

Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72:409–36.

Article  PubMed  Google Scholar 

Park S, Kim WG, Song E, Oh HS, Kim M, et al. Dynamic risk stratification for predicting recurrence in patients with differentiated thyroid cancer treated without radioactive iodine remnant ablation therapy. Thyroid. 2017;27:524–30.

Article  CAS  PubMed  Google Scholar 

Onyeisi JOS, Lopes CC, Götte M. Syndecan-4 as a pathogenesis factor and therapeutic target in cancer. Biomolecules. 2021;11:503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fallahi P, Ferrari SM, Galdiero MR, Varricchi G, Elia G, et al. Molecular targets of tyrosine kinase inhibitors in thyroid cancer. Semin Cancer Biol. 2022;79:180–96.

Article  CAS  PubMed  Google Scholar 

Mano H. Tec family of protein-tyrosine kinases: an overview of their structure and function. Cytokine Growth Factor Rev. 1999;10(3–4):267–80.

Article  CAS  PubMed  Google Scholar 

Takesono AFL, Schwartzberg PL. Beyond calcium: new signaling pathways for Tec family kinases. J Cell Sci. 2002;115(Pt 15):3039–48.

Article  CAS  PubMed  Google Scholar 

Yin Z, Zou Y, Wang D, Huang X, Xiong S, et al. Regulation of the Tec family of non-receptor tyrosine kinases in cardiovascular disease. Cell Death Discov. 2022;8:119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang W, Wang S, Zhang Z, Zhang C, Zeng S, et al. HZ-A-005, a potent, selective, and covalent Bruton’s tyrosine kinase inhibitor in preclinical development. Bioorganic Chem. 2020;105:104377.

Article  CAS  Google Scholar 

Norman P. Investigational Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs. 2016;25:891–9.

Article  CAS  PubMed  Google Scholar 

Wen JLB, Lin L, Chen Y, Wang O. KCNN4 is a diagnostic and prognostic biomarker that promotes papillary thyroid cancer progression. Aging (Albany NY). 2020;12(16):16437–56.

Article  CAS  PubMed  Google Scholar 

Chang Z, Cai C, Han D, Gao Y, Li Q, et al. Anoctamin5 regulates cell migration and invasion in thyroid cancer. Int J Oncol. 2017;51:1311–9.

Article  CAS  PubMed  Google Scholar 

Khalilia M, Chakraborty S, Popescu M. Predicting disease risks from highly imbalanced data using random forest. BMC Med Inform Decis Mak. 2011;11:1.

Article  Google Scholar 

Xu Y, Yang X, Huang H, Peng C, Ge Y, et al. Extreme gradient boosting model has a better performance in predicting the risk of 90-day readmissions in patients with ischaemic stroke. J Stroke Cerebrovasc Dis. 2019;28:104441.

Article  PubMed  Google Scholar 

Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2016;26:565–74.

Article  Google Scholar 

Faouzi J, Colliot O. Classic machine learning methods. In: Machine learning for brain disorders. 2023:25–75.

Collins GS, Ogundimu EO, Le Manach Y. Assessing calibration in an external validation study. Spine J. 2015;15:2446–7.

Article  PubMed  Google Scholar 

Wang J, Zhanghuang C, Jin L, Zhang Z, Tan X, et al. Development and validation of a nomogram to predict cancer-specific survival in elderly patients with papillary thyroid carcinoma: a population-based study. BMC Geriatrics. 2022;22:736.

Article  PubMed  PubMed Central  Google Scholar 

Tang J, Zhanghuang C, Yao Z, Li L, Xie Y, et al. Development and validation of a nomogram to predict cancer-specific survival in middle-aged patients with papillary thyroid cancer: a SEER database study. Heliyon. 2023;9:e13665.

Article  PubMed  PubMed Central  Google Scholar 

Cao Y-M, Zhang T-T, Li B-Y, Qu N, Zhu Y-X. Prognostic evaluation model for papillary thyroid cancer: a retrospective study of 660 cases. Gland Surg. 2021;10:2170–9.

Article  PubMed  PubMed Central  Google Scholar 

van Velsen EFSPR, Stegenga MT, van Kemenade FJ, van Ginhoven TM, Verburg FA, Visser WE. The influence of age on disease outcome in 2015 ATA high-risk differentiated thyroid cancer patients. Eur J Endocrinol. 2021;185(3):421–9.

Article  PubMed  Google Scholar 

Ganly I, Nixon IJ, Wang LY, Palmer FL, Migliacci JC, et al. Survival from differentiated thyroid cancer: what has age got to do with it? Thyroid. 2015;25:1106–14.

Article  PubMed  PubMed Central  Google Scholar 

Peng H, Zheng M, Li JY, Jin Z. Analysis of the ideal cutoff age as a predictor of differentiated thyroid cancer using the Surveillance, Epidemiology, and End Results database. Transl Cancer Res. 2024;13:4278–89.

Article  PubMed  PubMed Central  Google Scholar 

Chen P, Feng HJ, Ouyang W, Wu JQ, Wang J, et al. Risk factors for nonremission and progression-free survival after I-131 therapy in patients with lung metastasis from differentiated thyroid cancer: a single-institute, retrospective analysis in Southern China. Endocr Pract. 2016;22:1048–56.

Article  PubMed  Google Scholar 

Luis PO, Lucía MJA, Hugo RC, Ramiro RM, Stalin CQ, et al. Differentiated thyroid carcinoma long-term prognostic factors. Int J Surg Oncol. 2024;2024:1067447.

PubMed  PubMed Central  Google Scholar 

Chen Z, Wang Y, Li D, Le Y, Han Y, et al. Single-Cell RNA sequencing revealed a 3-gene panel predicted the diagnosis and prognosis of thyroid papillary carcinoma and associated with tumor immune microenvironment. Front Oncol. 2022;12:862313.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi J, Wu P, Sheng L, Sun W, Zhang H. Ferroptosis-related gene signature predicts the prognosis of papillary thyroid carcinoma. Cancer Cell Int. 2021;21:1.

Article  PubMed  PubMed Central  Google Scholar 

Huang YXZ, Li X, Chen W, He Y, Wu S, Li X, Hou B, Sun J, Wang S, He Y, Jiang H, Lun Y, Zhang J. Development and validation of a ferroptosis-related prognostic model for the prediction of progression-free survival and immune microenvironment in patients with papillary thyroid carcinoma. Int Immunopharmacol. 2021;101(Pt A):108156.

Article  CAS  PubMed  Google Scholar 

Su Y, Xu B, Li J, Shen Q, Lei Z, et al. Identification of m6A-associated LncRNAs as predict factors for the immune infiltration and prognosis of thyroid cancer. Ann Med. 2023;55:1298–316.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Bai N, Li X. Comprehensive analysis of the prognosis and drug sensitivity of differentiation-related lncRNAs in papillary thyroid cancer. Cancers. 2022;14:1353.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang F, Zhou YL. Identification of a four-miRNA signature predicts the prognosis of papillary thyroid cancer. World J Clin Cases. 2023;11:92–103.

Article  PubMed  PubMed Central  Google Scholar 

Ding Y, Li P, Wang W, Liu F, Hashmi AA. A potential four-gene signature and nomogram for predicting the overall survival of papillary thyroid cancer. Dis Markers. 2022;2022:1–31.

Google Scholar 

Xia M, Wang S, Wang L, Mei Y, Tu Y, et al. The role of lactate metabolism-related LncRNAs in the prognosis, mutation, and tumor microenvironment of papillary thyroid cancer. Front Endocrinol. 2023;14:1062317.

Article  Google Scholar 

Faris M, Bot A. In this issue: Tec kinases in the crosshairs. Int Rev Immunol. 2012;31:85–6.

Article  PubMed  Google Scholar 

Li F, Jiang Y, Zheng Q, Yang X, Wang S. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF. Biochem Biophys Res Commun. 2011;404:79–85.

Comments (0)

No login
gif