TDP-43 seeding activity in the olfactory mucosa of patients with amyotrophic lateral sclerosis

Huisman MHB, de Jong SW, van Doormaal PTC, et al. Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. J Neurol Neurosurg Psychiatry. 2011;82(10):1165–70. https://doi.org/10.1136/jnnp.2011.244939.

Article  PubMed  Google Scholar 

Chiò A, Logroscino G, Hardiman O, et al. Prognostic factors in ALS: A critical review. Amyotroph Lateral Scler. 2009;10(5–6):310–23. https://doi.org/10.3109/17482960802566824.

Article  PubMed  PubMed Central  Google Scholar 

Gordon PH, Cheng B, Katz IB, Mitsumoto H, Rowland LP. Clinical features that distinguish PLS, upper motor neuron–dominant ALS, and typical ALS. Neurology. 2009;72(22):1948–52. https://doi.org/10.1212/WNL.0b013e3181a8269b.

Article  CAS  PubMed  Google Scholar 

Gordon PH, Cheng B, Katz IB, et al. The natural history of primary lateral sclerosis. Neurology. 2006;66(5):647–53. https://doi.org/10.1212/01.wnl.0000200962.94777.71.

Article  CAS  PubMed  Google Scholar 

Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10(11):661–70. https://doi.org/10.1038/nrneurol.2014.184.

Article  PubMed  Google Scholar 

de Boer EMJ, Barritt AW, Elamin M, et al. Facial Onset Sensory and Motor Neuronopathy. Neurol Clin Pract. 2021;11(2):147–57. https://doi.org/10.1212/CPJ.0000000000000834.

Article  PubMed  PubMed Central  Google Scholar 

Strong MJ, Abrahams S, Goldstein LH, et al. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Front Degener. 2017;18(3–4):153–74. https://doi.org/10.1080/21678421.2016.1267768.

Article  Google Scholar 

Couratier P, Corcia P, Lautrette G, Nicol M, Preux PM, Marin B. Epidemiology of amyotrophic lateral sclerosis: A review of literature. Rev Neurol (Paris). 2016;172(1):37–45. https://doi.org/10.1016/j.neurol.2015.11.002.

Article  CAS  PubMed  Google Scholar 

Chio A, Calvo A, Moglia C, Mazzini L, Mora G. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry. 2011;82(7):740–6. https://doi.org/10.1136/jnnp.2010.235952.

Article  PubMed  Google Scholar 

Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science (80- ). Published online 2006. https://doi.org/10.1126/science.1134108

Kumar ST, Nazarov S, Porta S, et al. Seeding the aggregation of TDP-43 requires post-fibrillization proteolytic cleavage. Nat Neurosci. 2023;26(6):983–96. https://doi.org/10.1038/s41593-023-01341-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takeda T, Kitagawa K, Arai K. Phenotypic variability and its pathological basis in amyotrophic lateral sclerosis. Neuropathology. 2020;40(1):40–56. https://doi.org/10.1111/neup.12606.

Article  CAS  PubMed  Google Scholar 

Neumann M, Lee EB, Mackenzie IR. Frontotemporal Lobar Degeneration TDP-43-Immunoreactive Pathological Subtypes: Clinical and Mechanistic Significance. In: ; 2021:201–217. https://doi.org/10.1007/978-3-030-51140-1_13

Mishima T, Koga S, Lin WL, et al. Perry Syndrome: A Distinctive Type of TDP-43 Proteinopathy. J Neuropathol Exp Neurol. 2017;76(8):676–82. https://doi.org/10.1093/jnen/nlx049.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nelson PT, Dickson DW, Trojanowski JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142(6):1503–27. https://doi.org/10.1093/brain/awz099.

Article  PubMed  PubMed Central  Google Scholar 

Weihl CC, Temiz P, Miller SE, et al. TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2008;79(10):1186–9. https://doi.org/10.1136/jnnp.2007.131334.

Article  CAS  PubMed  Google Scholar 

Meneses A, Koga S, O’Leary J, Dickson DW, Bu G, Zhao N. TDP-43 Pathology in Alzheimer’s Disease. Mol Neurodegener. 2021;16(1):84. https://doi.org/10.1186/s13024-021-00503-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakashima-Yasuda H, Uryu K, Robinson J, et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 2007;114(3):221–9. https://doi.org/10.1007/s00401-007-0261-2.

Article  CAS  PubMed  Google Scholar 

McAleese KE, Walker L, Erskine D, Thomas AJ, McKeith IG, Attems J. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol. 2017;27(4):472–9. https://doi.org/10.1111/bpa.12424.

Article  CAS  PubMed  Google Scholar 

Koga S, Lin WL, Walton RL, Ross OA, Dickson DW. TDP-43 pathology in multiple system atrophy: colocalization of TDP-43 and α-synuclein in glial cytoplasmic inclusions. Neuropathol Appl Neurobiol. 2018;44(7):707–21. https://doi.org/10.1111/nan.12485.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uryu K, Nakashima-Yasuda H, Forman MS, et al. Concomitant TAR-DNA-Binding Protein 43 Pathology Is Present in Alzheimer Disease and Corticobasal Degeneration but Not in Other Tauopathies. J Neuropathol Exp Neurol. 2008;67(6):555–64. https://doi.org/10.1097/NEN.0b013e31817713b5.

Article  CAS  PubMed  Google Scholar 

Riku Y, Iwasaki Y, Ishigaki S, et al. Motor neuron TDP-43 proteinopathy in progressive supranuclear palsy and corticobasal degeneration. Brain. 2022;145(8):2769–84. https://doi.org/10.1093/brain/awac091.

Article  PubMed  Google Scholar 

Schwab C, Arai T, Hasegawa M, Yu S, McGeer PL. Colocalization of Transactivation-Responsive DNA-Binding Protein 43 and Huntingtin in Inclusions of Huntington Disease. J Neuropathol Exp Neurol. 2008;67(12):1159–65. https://doi.org/10.1097/NEN.0b013e31818e8951.

Article  PubMed  Google Scholar 

Moda F, Ciullini A, Dellarole IL, et al. Secondary Protein Aggregates in Neurodegenerative Diseases: Almost the Rule Rather than the Exception. Front Biosci. 2023;28(10):255. https://doi.org/10.31083/j.fbl2810255.

Article  CAS  Google Scholar 

Wang HY, Wang IF, Bose J, Shen CKJ. Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics. 2004;83(1):130–9. https://doi.org/10.1016/S0888-7543(03)00214-3.

Article  CAS  PubMed  Google Scholar 

Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in als and FTD: Disrupted RNA and protein homeostasis. Neuron Published online. 2013. https://doi.org/10.1016/j.neuron.2013.07.033.

Article  Google Scholar 

Ayala YM, Zago P, D’Ambrogio A, et al. Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci. 2008;121(22):3778–85. https://doi.org/10.1242/jcs.038950.

Article  CAS  PubMed  Google Scholar 

Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602–11. https://doi.org/10.1016/j.bbrc.2006.10.093.

Article  CAS  PubMed  Google Scholar 

Cohen TJ, Hwang AW, Restrepo CR, Yuan CX, Trojanowski JQ, Lee VMY. An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun. 2015;6(1):5845. https://doi.org/10.1038/ncomms6845.

Article  CAS  PubMed  Google Scholar 

Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci. 2022;23(20):12508. https://doi.org/10.3390/ijms232012508.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif