Abramov G, Velyvis A, Rennella E et al (2020) A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Proc Natl Acad Sci 117:12836–12846. https://doi.org/10.1073/pnas.2004317117
Al-Abdul-Wahid MS, Evanics F, Prosser RS (2011a) Dioxygen Transmembrane distributions and partitioning thermodynamics in lipid bilayers and Micelles. Biochemistry 50:3975–3983. https://doi.org/10.1021/bi200168n
Al-Abdul-Wahid MS, Verardi R, Veglia G, Prosser RS (2011b) Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen. J Biomol NMR 51:173–183. https://doi.org/10.1007/s10858-011-9551-z
Bezsonova I, Evanics F, Marsh JA et al (2007) Oxygen as a paramagnetic probe of clustering and solvent exposure in folded and unfolded states of an SH3 domain. J Am Chem Soc 129:1826–1835. https://doi.org/10.1021/ja065173o
Cai S, Seu C, Kovacs Z et al (2006) Sensitivity enhancement of multidimensional NMR experiments by Paramagnetic Relaxation effects. J Am Chem Soc 128:13474–13478. https://doi.org/10.1021/ja0634526
Diercks T, Daniels M, Kaptein R (2005) Extended flip-back schemes for sensitivity enhancement in Multidimensional HSQC-type out-and-back experiments. J Biomol NMR 33:243–259. https://doi.org/10.1007/s10858-005-3868-4
Eletsky A, Moreira O, Kovacs H, Pervushin K (2003) A novel strategy for the assignment of side-chain resonances in completely deuterated large proteins using 13 C spectroscopy. J Biomol Nmr 26:167–179. https://doi.org/10.1023/a:1023572320699
Etzkorn M, Raschle T, Hagn F et al (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401. https://doi.org/10.1016/j.str.2013.01.005
Evanics F (2005) Discriminating binding and positioning of amphiphiles to lipid bilayers by 1H NMR. Anal Chim Acta 534:21–29. https://doi.org/10.1016/j.aca.2004.06.061
Evanics F, Hwang PM, Cheng Y et al (2006) Topology of an outer-membrane enzyme: measuring oxygen and water contacts in solution NMR studies of PagP. J Am Chem Soc 128:8256–8264. https://doi.org/10.1021/ja0610075
Hawk LML, Gee CT, Urick AK et al (2016) Paramagnetic relaxation enhancement for protein-observed 19F NMR as an enabling approach for efficient fragment screening. RSC Adv 6:95715–95721. https://doi.org/10.1039/c6ra21226c
Hiller S, Wider G, Etezady-Esfarjani T et al (2005) Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures. J Biomol Nmr 32:61–70. https://doi.org/10.1007/s10858-005-3070-8
Huang SK, Pandey A, Tran DP et al (2021) Delineating the conformational landscape of the adenosine A2A receptor during G protein coupling. Cell 184:1884–1894e14. https://doi.org/10.1016/j.cell.2021.02.041
Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2
Kim TH, Mehrabi P, Ren Z et al (2017) The role of dimer asymmetry and protomer dynamics in enzyme catalysis. Science 355:eaag2355–eaag2339. https://doi.org/10.1126/science.aag2355
Kitahara R, Yoshimura Y, Xue M et al (2016) Detecting O2 binding sites in protein cavities. Sci Rep 6:20534. https://doi.org/10.1038/srep20534
Kitahara R, Sakuraba S, Kameda T et al (2018) Nuclear magnetic resonance-based determination of dioxygen binding sites in protein cavities. Protein Sci 27:769–779. https://doi.org/10.1002/pro.3371
Kitevski-LeBlanc J, Evanics F, Prosser R (2009) Approaches for the measurement of solvent exposure in proteins by 19 F NMR. J Biomol NMR 45:255–264
Le MT, Brown RE, Simon AE, Dayie TK (2015) Chapter nineteen in vivo, large-Scale Preparation of uniformly 15 N- and site-specifically 13 C-Labeled homogeneous, recombinant RNA for NMR studies. Methods Enzym 565:495–535. https://doi.org/10.1016/bs.mie.2015.07.020
Liepinsh E, Baryshev M, Sharipo A et al (2001) Thioredoxin fold as Homodimerization Module in the putative chaperone ERp29 NMR structures of the domains and experimental model of the 51 kDa dimer. Structure 9:457–471. https://doi.org/10.1016/s0969-2126(01)00607-4
Liu JJ, Horst R, Katritch V et al (2012) Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110. https://doi.org/10.1126/science.1215802
Luchette PA, Prosser RS, Sanders CR (2002) Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and (19)F NMR spectroscopy. J Am Chem Soc 124:1778–1781. https://doi.org/10.1021/ja016748e
Ma P, Li D, Brüschweiler R (2023) Predicting protein flexibility with AlphaFold. Proteins: Struct Funct Bioinform 91:847–855. https://doi.org/10.1002/prot.26471
Mehrabi P, Pietrantonio CD, Kim TH et al (2019a) Substrate-based allosteric regulation of a homodimeric enzyme. J Am Chem Soc 141:11540–11556. https://doi.org/10.1021/jacs.9b03703
Mehrabi P, Schulz EC, Dsouza R et al (2019b) Time-resolved crystallography reveals allosteric communication aligned with molecular breathing. Science 365:1167–1170. https://doi.org/10.1126/science.aaw9904
Mulder FAA, Tenori L, Luchinat C (2019) Fast and quantitative NMR metabolite analysis afforded by a paramagnetic Co-solute. Angew Chem Int Ed 58:15283–15286. https://doi.org/10.1002/anie.201908006
Mulder FAA, Tenori L, Licari C, Luchinat C (2023) Practical considerations for rapid and quantitative NMR-based metabolomics. J Magn Reson 352:107462. https://doi.org/10.1016/j.jmr.2023.107462
Oktaviani NA, Risør MW, Lee Y-H et al (2015) Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide. J Biomol NMR 62:129–142. https://doi.org/10.1007/s10858-015-9925-8
Pervushin K, Vögeli B, Eletsky A (2002) Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902. https://doi.org/10.1021/ja027149q
Prosser RS, Evanics F, Kitevski JL, Patel S (2007) The measurement of immersion depth and topology of membrane proteins by solution state NMR. Biochim Biophys Acta 1768:3044–3051. https://doi.org/10.1016/j.bbamem.2007.09.011
Prosser RS, Luchette PA, Westerman PW (2000) Using O2 to probe membrane immersion depth by 19F NMR. Proceedings Of The National Academy Of Sciences Of The United States Of America 97:9967–9971. https://doi.org/10.1073/pnas.170295297
Prosser RS, Luchette PA, Westerman PW et al (2001) Determination of membrane immersion depth with O2: a high-pressure 19F NMR study. Biophys J 80:1406–1416. https://doi.org/10.1016/s0006-3495(01)76113-9
Russo NVD, Condurso HL, Li K et al (2015) Oxygen diffusion pathways in a cofactor-independent dioxygenase. Chem Sci 6:6341–6348. https://doi.org/10.1039/c5sc01638j
Saam J, Ivanov I, Walther M et al (2007) Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc Natl Acad Sci 104:13319–13324. https://doi.org/10.1073/pnas.0702401104
Article ADS MATH Google Scholar
Schanda P, Forge V, Brutscher B (2006a) HET-SOFAST NMR for fast detection of structural compactness and heterogeneity along polypeptide chains. Magn Reson Chem 44:S177–S184. https://doi.org/10.1002/mrc.1825
Schanda P, Melckebeke HV, Brutscher B (2006b) Speeding up three-Dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043. https://doi.org/10.1021/ja062025p
Teng C (2001) Molecular Oxygen spin–lattice relaxation in solutions measured by Proton Magnetic Relaxation Dispersion. J Magn Reson 148:31–34. https://doi.org/10.1006/jmre.2000.2219
Article ADS MATH Google Scholar
Teng C-L, Bryant RG (2004) Mapping Oxygen accessibility to Ribonuclease A using high-resolution NMR relaxation spectroscopy. Biophys J 86:1713–1725. https://doi.org/10.1016/s0006-3495(04)74240-x
Comments (0)