Quantifying protein-drug lifetimes in human cells by F NMR spectroscopy

Basak S, Li Y, Tao S, Daryaee F, Merino J, Gu C, Delker SL, Phan JN, Edwards TE, Walker SG, Tonge PJ (2022) Structure–kinetic relationship studies for the development of long residence time LpxC inhibitors. J Med Chem 65:11854–11875. https://doi.org/10.1021/acs.jmedchem.2c00974

Article  Google Scholar 

Byeon IJ, Meng X, Jung J, Zhao G, Yang R, Ahn J, Shi J, Concel J, Aiken C, Zhang P, Gronenborn AM (2009) Structural convergence between cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139:780–790. https://doi.org/10.1016/j.cell.2009.10.010

Article  Google Scholar 

Claridge T (2009) Software review of MNova: NMR data processing, analysis, and prediction software. J Chem Inf Model 49:1136–1137. https://doi.org/10.1021/ci900090d

Article  MATH  Google Scholar 

Copeland RA, Pompliano DL, Meek TD (2006) Drug–target residence time and its implications for lead optimization. Nat Rev Drug Discovery 5:730–739. https://doi.org/10.1038/nrd2082

Article  Google Scholar 

Danielsson J, Mu X, Lang L, Wang H, Binolfi A, Theillet FX, Bekei B, Logan DT, Selenko P, Wennerström H, Oliveberg M (2015) Thermodynamics of protein destabilization in live cells. Proc Natl Acad Sci U S A 112:12402–12407. https://doi.org/10.1073/pnas.1511308112

Article  ADS  Google Scholar 

Davis CM, Gruebele M (2021) Cellular sticking can strongly reduce complex binding by speeding dissociation. J Phys Chem B 125:3815–3823. https://doi.org/10.1021/acs.jpcb.1c00950

Article  Google Scholar 

Davis DG, Perlman ME, London RE (1994) Direct measurements of the Dissociation-Rate constant for Inhibitor-Enzyme complexes via the T1ρ and T2 (CPMG) methods. J Magn Reson Ser B 104:266–275. https://doi.org/10.1006/jmrb.1994.1084

Article  Google Scholar 

Fanghänel J, Fischer G (2002) Thermodynamic characterization of the interaction of human Cyclophilin 18 with cyclosporin A. Biophys Chem 100:351–366. https://doi.org/10.1016/S0301-4622(02)00292-2

Article  MATH  Google Scholar 

Freeman R, Hill HDW (1971) Fourier transform study of NMR spin–lattice relaxation by progressive saturation. J Chem Phys 54:3367–3377. https://doi.org/10.1063/1.1675352

Article  ADS  MATH  Google Scholar 

Gaither LA, Borawski J, Anderson LJ, Balabanis KA, Devay P, Joberty G, Rau C, Schirle M, Bouwmeester T, Mickanin C, Zhao S, Vickers C, Lee L, Deng G, Baryza J, Fujimoto RA, Lin K, Compton T, Wiedmann B (2010) Multiple cyclophilins involved in different cellular pathways mediate HCV replication. Virology 397:43–55. https://doi.org/10.1016/j.virol.2009.10.043

Article  Google Scholar 

Gebre ST, Cameron SA, Li L, Babu YS, Schramm VL (2017) Intracellular rebinding of transition-state analogues provides extended in vivo Inhibition lifetimes on human purine nucleoside phosphorylase. J Biol Chem 292:15907–15915. https://doi.org/10.1074/jbc.M117.801779

Article  Google Scholar 

Guo D, Mulder-Krieger T, IJzerman AP, Heitman LH (2012) Functional efficacy of adenosine A2a receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol 166:1846–1859. https://doi.org/10.1111/j.1476-5381.2012.01897.x

Article  Google Scholar 

Husi H, Zurini MGM (1994) Comparative binding studies of cyclophilins to cyclosporine A and derivatives by fluorescence measurements. Anal Biochem 222:251–255. https://doi.org/10.1006/abio.1994.1481

Article  Google Scholar 

Jackson JC, Hammill JT, Mehl RA (2007) Site-specific incorporation of a 19F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J Am Chem Soc 129:1160–1166. https://doi.org/10.1021/ja064661t

Article  Google Scholar 

Jarmoskaite I, AlSadhan I, Vaidyanathan PP, Herschlag D (2020) How to measure and evaluate binding affinities. eLife 9:e57264. https://doi.org/10.7554/eLife.57264

Article  Google Scholar 

Lin W, Quintero A, Zhang Y (2016) Conformational heterogeneity of cyclosporin A in Cyclophilin 18 binding. PLoS ONE 11:e0153669. https://doi.org/10.1371/journal.pone.0153669

Article  Google Scholar 

Lu H, Tonge PJ (2010) Drug–target residence time: critical information for lead optimization. Curr Opin Chem Biol 14:467–474. https://doi.org/10.1016/j.cbpa.2010.06.176

Article  MATH  Google Scholar 

Lu H, England K, am Ende C, Truglio JJ, Luckner S, Reddy BG, Marlenee NL, Knudson SE, Knudson DL, Bowen RA, Kisker C, Slayden RA, Tonge PJ (2009) Slow-onset Inhibition of the FabI Enoyl reductase from Francisella tularensis: residence time and in vivo activity. ACS Chem Biol 4:221–231. https://doi.org/10.1021/cb800306y

Article  Google Scholar 

Lu H, Iuliano JN, Tonge PJ (2018) Structure–kinetic relationships that control the residence time of drug–target complexes: insights from molecular structure and dynamics. Curr Opin Chem Biol 44:101–109. https://doi.org/10.1016/j.cbpa.2018.06.002

Article  MATH  Google Scholar 

Lu M, Ishima R, Polenova T, Gronenborn AM (2019) 19F NMR relaxation studies of fluorosubstituted Tryptophans. J Biomol NMR 73:401–409. https://doi.org/10.1007/s10858-019-00268-y

Article  Google Scholar 

Luchinat E, Barbieri L, Cremonini M, Nocentini A, Supuran CT, Banci L (2020a) Intracellular binding/unbinding kinetics of approved drugs to carbonic anhydrase II observed by in-cell NMR. ACS Chem Biol 15:2792–2800. https://doi.org/10.1021/acschembio.0c00590

Article  Google Scholar 

Luchinat E, Barbieri L, Cremonini M, Nocentini A, Supuran CT, Banci L (2020b) Drug screening in human cells by NMR spectroscopy allows the early assessment of drug potency. Angew Chem Int Ed 59:6535–6539. https://doi.org/10.1002/anie.201913436

Article  Google Scholar 

Luchinat E, Barbieri L, Davis B, Brough PA, Pennestri M, Banci L (2024) Ligand-Based competition binding by Real-Time 19F NMR in human cells. J Med Chem 67:1115–1126. https://doi.org/10.1021/acs.jmedchem.3c01600

Article  Google Scholar 

Maschera B, Darby G, Palú G, Wright LL, Tisdale M, Myers R, Blair ED, Furfine ES (1996) Human immunodeficiency virus: mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex. J Biol Chem 271:33231–33235. https://doi.org/10.1074/jbc.271.52.33231

Article  Google Scholar 

Moschen T, Grutsch S, Juen MA, Wunderlich CH, Kreutz C, Tollinger M (2016) Measurement of Ligand–Target residence times by 1H relaxation dispersion NMR spectroscopy. J Med Chem 59:10788–10793. https://doi.org/10.1021/acs.jmedchem.6b01110

Article  Google Scholar 

Niklasson M, Otten R, Ahlner A, Andresen C, Schlagnitweit J, Petzold K, Lundström P (2017) Comprehensive analysis of NMR data using advanced line shape fitting. J Biomol NMR 69:93–99. https://doi.org/10.1007/s10858-017-0141-6

Article  Google Scholar 

Nishizawa M, Walinda E, Morimoto D, Kohn B, Scheler U, Shirakawa M, Sugase K (2021) Effects of weak nonspecific interactions with ATP on proteins. J Am Chem Soc 143:11982–11993. https://doi.org/10.1021/jacs.0c13118

Article  Google Scholar 

Papaneophytou CP, Grigoroudis AI, McInnes C, Kontopidis G (2014) Quantification of the effects of ionic strength, viscosity, and hydrophobicity on protein–ligand binding affinity. ACS Med Chem Lett 5:931–936. https://doi.org/10.1021/ml500204e

Article  Google Scholar 

Phillip Y, Kiss V, Schreiber G (2012) Protein-binding dynamics imaged in a living cell. Proc Natl Acad Sci U S A 109:1461–1466. https://doi.org/10.1073/pnas.1112171109

Article  ADS  MATH  Google Scholar 

Robers MB, Dart ML, Woodroofe CC, Zimprich CA, Kirkland TA, Machleidt T, Kupcho KR, Levin S, Hartnett JR, Zimmerman K, Niles AL, Ohana RF, Daniels DL, Slater M, Wood MG, Cong M, Cheng YQ, Wood KV (2015) Target engagement and drug residence time can be observed in living cells with BRET. Nat Commun 6:10091. https://doi.org/10.1038/ncomms10091

Article  ADS  Google Scholar 

Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Wälchli M, Smith BO, Shirakawa M, Güntert P, Ito Y (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105. https://doi.org/10.1038/nature07814

Article  ADS  Google Scholar 

Shuman CF, Markgren PO, Hämäläinen M, Danielson UH (2003) Elucidation of HIV-1 protease resistance by characterization of interaction kinetics between inhibitors and enzyme variants. Antiviral Res 58:235–242. https://doi.org/10.1016/S0166-3542(03)00002-0

Article  Google Scholar 

Song X, Lv T, Chen J, Wang J, Yao L (2019) Characterization of residue specific protein folding and unfolding dynamics in cells. J Am Chem Soc 141:11363–11366. https://doi.org/10.1021/jacs.9b04435

Article  MATH  Google Scholar 

Spagnuolo LA, Eltschkner S, Yu W, Daryaee F, Davoodi S, Knudson SE, Allen EKH, Merino J, Pschibul A, Moree B, Thivalapill N, Truglio JJ, Salafsky J, Slayden RA, Kisker C, Tonge PJ (2017) Evaluating the contribution of transition-state destabilization to changes in the residence time of triazole-based InhA inhibitors. J Am Chem Soc 139:3417–3429. https://doi.org/10.1021/jacs.6b11148

Article  Google Scholar 

Speer SL, Zheng W, Jiang X, Chu IT, Guseman AJ, Liu M, Pielak GJ, Li C (2021) The intracellular environment affects protein–protein interactions. Proc Natl Acad Sci U S A 118:e2019918118. https://doi.org/10.1073/pnas.2019918118

Article  Google Scholar 

Comments (0)

No login
gif