Membrane protein structure determination from Paramagnetic Relaxation Enhancement and internuclear distance restraints

Ahlawat S, Mote KR, Lakomek N-A, Agarwal V (2022) Solid-State NMR: methods for biological solids. Chem Rev 122:9643–9737. https://doi.org/10.1021/acs.chemrev.1c00852

Article  MATH  Google Scholar 

Alderson TR, Kay LE (2020) Unveiling invisible protein States with NMR spectroscopy. Curr Opin Struct Biol 60:39–49. https://doi.org/10.1016/j.sbi.2019.10.008

Article  MATH  Google Scholar 

Baran MC, Huang YJ, Moseley HNB, Montelione GT (2004) Automated analysis of protein NMR assignments and structures. Chem Rev 104:3541–3556. https://doi.org/10.1021/cr030408p

Article  MATH  Google Scholar 

Barlow DJ, Thornton JM (1988) Helix geometry in proteins. J Mol Biol 201:601–619. https://doi.org/10.1016/0022-2836(88)90641-9

Article  MATH  Google Scholar 

Benjin X, Ling L (2020) Developments, applications, and prospects of cryo-electron microscopy. Protein Sci 29:872–882. https://doi.org/10.1002/pro.3805

Article  MATH  Google Scholar 

Bloembergen N (1948) Nuclear magnetic relaxation. Springer Netherlands, Dordrecht

Book  MATH  Google Scholar 

Castellani F, van Rossum B, Diehl A et al (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:99–102. https://doi.org/10.1038/nature01070

Article  ADS  MATH  Google Scholar 

Choi AR, Kim SY, Yoon SR et al (2007) Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function. J Microbiol Biotechnol 17:138–145

MATH  Google Scholar 

Comellas G, Rienstra CM (2013) Protein structure determination by Magic-Angle spinning Solid-State NMR, and insights into the formation, structure, and stability of amyloid fibrils. Annu Rev Biophys 42:515–536. https://doi.org/10.1146/annurev-biophys-083012-130356

Article  Google Scholar 

Eilers M, Shekar SC, Shieh T et al (2000) Internal packing of helical membrane proteins. Proc Natl Acad Sci 97:5796–5801. https://doi.org/10.1073/pnas.97.11.5796

Article  ADS  MATH  Google Scholar 

Furutani Y, Kawanabe A, Jung K-H, Kandori H (2005) FTIR spectroscopy of the All-Trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the schiff base and Asp75. Biochemistry 44:12287–12296. https://doi.org/10.1021/bi050841o

Article  Google Scholar 

Gaponenko V, Howarth JW, Gasmi-Seabrook G et al (2000) Protein global fold determination using site‐directed spin and isotope labeling. Protein Sci 9:302–309. https://doi.org/10.1110/ps.9.2.302

Article  Google Scholar 

García-Nafría J, Tate CG (2020) Cryo-Electron microscopy: moving beyond X-Ray crystal structures for drug receptors and drug development. Annu Rev Pharmacol Toxicol 60:51–71. https://doi.org/10.1146/annurev-pharmtox-010919-023545

Article  Google Scholar 

Gillespie JR, Shortle D (1997) Characterization of long-range structure in the denatured state of Staphylococcal nuclease. I. paramagnetic relaxation enhancement by nitroxide spin labels1. J Mol Biol 268:158–169. https://doi.org/10.1006/jmbi.1997.0954

Article  MATH  Google Scholar 

Good DB, Wang S, Ward ME et al (2014) Conformational dynamics of a seven transmembrane helical protein Anabaena sensory rhodopsin probed by Solid-State NMR. J Am Chem Soc 136:2833–2842. https://doi.org/10.1021/ja411633w

Article  Google Scholar 

Goodsell DS, Zardecki C, Di Costanzo L et al (2020) RCSB protein data bank: enabling biomedical research and drug discovery. Protein Sci 29:52–65. https://doi.org/10.1002/pro.3730

Article  Google Scholar 

Güntert P (2009) Automated structure determination from NMR spectra. Eur Biophys J 38:129–143. https://doi.org/10.1007/s00249-008-0367-z

Article  ADS  Google Scholar 

Güntert P, Buchner L (2015) Combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR 62:453–471. https://doi.org/10.1007/s10858-015-9924-9

Article  Google Scholar 

Güntert P, Braun W, Wüthrich K (1991) Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol 217:517–530. https://doi.org/10.1016/0022-2836(91)90754-T

Article  MATH  Google Scholar 

Hass MA, Ubbink M (2014) Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints. Curr Opin Struct Biol 24:45–53. https://doi.org/10.1016/j.sbi.2013.11.010

Article  MATH  Google Scholar 

Hu Y, Cheng K, He L et al (2021) NMR-Based methods for protein analysis. Anal Chem 93:1866–1879. https://doi.org/10.1021/acs.analchem.0c03830

Article  MATH  Google Scholar 

Iwahara J, Schwieters CD, Clore GM (2004) Ensemble approach for NMR structure refinement against 1H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J Am Chem Soc 126:5879–5896. https://doi.org/10.1021/ja031580d

Article  Google Scholar 

Janik R, Peng X, Ladizhansky V (2007) 13 C–13 C distance measurements in U–13 C, 15 N-labeled peptides using rotational resonance width experiment with a homogeneously broadened matching condition. J Magn Reson 188:129–140. https://doi.org/10.1016/j.jmr.2007.06.005

Article  ADS  Google Scholar 

Kermani AA (2021) A guide to membrane protein X-ray crystallography. FEBS J 288:5788–5804. https://doi.org/10.1111/febs.15676

Article  MATH  Google Scholar 

Klukowski P, Riek R, Güntert P (2022) Rapid protein assignments and structures from Raw NMR spectra with the deep learning technique ARTINA. Nat Commun 13:6151. https://doi.org/10.1038/s41467-022-33879-5

Article  ADS  MATH  Google Scholar 

Kuszewski J, Schwieters CD, Garrett DS et al (2004) Completely automated, highly Error-Tolerant macromolecular structure determination from multidimensional nuclear overhauser enhancement spectra and chemical shift assignments. J Am Chem Soc 126:6258–6273. https://doi.org/10.1021/ja049786h

Article  Google Scholar 

Lacabanne D, Orelle C, Lecoq L et al (2019) Flexible-to-rigid transition is central for substrate transport in the ABC transporter BmrA from Bacillus subtilis. Commun Biol 2:1–9. https://doi.org/10.1038/s42003-019-0390-x

Article  Google Scholar 

Ladizhansky V (2017) Applications of solid-state NMR to membrane proteins. Biochim Biophys Acta BBA - Proteins Proteom 1865:1577–1586. https://doi.org/10.1016/j.bbapap.2017.07.004

Article  MATH  Google Scholar 

Ladizhansky V, Palani RS, Mardini M, Griffin RG (2024) Dipolar recoupling in rotating solids. Chem Rev 124:12844–12917. https://doi.org/10.1021/acs.chemrev.4c00373

Article  Google Scholar 

Laurents DV (2022) AlphaFold 2 and NMR spectroscopy: partners to understand protein structure, dynamics and function. Front Mol Biosci 9. https://doi.org/10.3389/fmolb.2022.906437

Lee S, Chirikjian GS (2004) Interhelical angle and distance preferences in globular proteins. Biophys J 86:1105. https://doi.org/10.1016/S0006-3495(04)74185-5

Article  MATH  Google Scholar 

Liang B, Bushweller JH, Tamm LK (2006) Site-Directed parallel Spin-Labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J Am Chem Soc 128:4389–4397. https://doi.org/10.1021/ja0574825

Article  MATH  Google Scholar 

Maciejewski MW, Schuyler AD, Gryk MR et al (2017) NMRbox: A resource for biomolecular NMR computation. Biophys J 112:1529–1534. https://doi.org/10.1016/j.bpj.2017.03.011

Article  Google Scholar 

Mandala VS, Williams JK, Hong M (2018) Structure and dynamics of membrane proteins from Solid-State NMR. Annu Rev Biophys 47:201–222. https://doi.org/10.1146/annurev-biophys-070816-033712

Article  MATH  Google Scholar 

Manolikas T, Herrmann T, Meier BH (2008) Protein structure determination from 13 C Spin-Diffusion Solid-State NMR spectroscopy. J Am Chem Soc 130:3959–3966. https://doi.org/10.1021/ja078039s

Article  MATH  Google Scholar 

Maveyraud L, Mourey L (2020) Protein X-ray crystallography and drug discovery. Molecules 25:1030. https://doi.org/10.3390/molecules25051030

Article  MATH  Google Scholar 

Milikisiyants S, Wang S, Munro RA et al (2017) Oligomeric structure of Anabaena sensory rhodopsin in a lipid bilayer environment by combining Solid-State NMR and Long-range DEER constraints. J Mol Biol 429:1903–1920. https://doi.org/10.1016/j.jmb.2017.05.005

Article 

Comments (0)

No login
gif