The SOFAST-HMBC-HMQC experiment for pairing geminal methyl groups in valine and leucine side-chains

Abayev-Avraham M, Salzberg Y, Gliksberg D, Oren-Suissa M, Rosenzweig R (2023) DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones. Nat Commun 14:7066

Article  ADS  Google Scholar 

Abramov G, Velyvis A, Rennella E, Wong LE, Kay LE (2020) A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Proceedings of the National Academy of Sciences 117:12836–12846

Amero C, Asunción Durá M, Noirclerc-Savoye M, Perollier A, Gallet B, Plevin MJ, Vernet T, Franzetti B, Boisbouvier J (2011) A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. J Biomol NMR 50:229–236

Article  Google Scholar 

Aoto PC, Martin BT, Wright PE (2016) NMR characterization of information flow and allosteric communities in the MAP kinase p38γ. Sci Rep 6:28655

Article  ADS  Google Scholar 

Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE (2019) A dynamic switch in inactive p38γ leads to an excited state on the pathway to an active kinase. Biochemistry 58:5160–5172

Article  Google Scholar 

Ayala I, Chiari L, Kerfah R, Boisbouvier J, Gans P, Hamelin O (2020) Asymmetric synthesis of Methyl specifically labelled L -Threonine and application to the NMR studies of high molecular weight proteins. ChemistrySelect 5:5092–5098

Article  Google Scholar 

Cai M, Huang Y, Yang R, Craigie R, Clore GM (2016) A simple and robust protocol for high-yield expression of perdeuterated proteins in Escherichia coli grown in shaker flasks. J Biomol NMR 66:85–91

Article  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

Article  Google Scholar 

Dudley JA, Park S, MacDonald ME, Fetene E, Smith CA (2020) Resolving overlapped signals with automated FitNMR analytical peak modeling. J Magn Reson 318:106773

Article  Google Scholar 

Ernst RR, Anderson WA (1966) Application of fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37:93–102

Article  ADS  MATH  Google Scholar 

Fischer M, Kloiber K, Häusler J, Ledolter K, Konrat R, Schmid W (2007) Synthesis of a13 C-Methyl‐Group‐Labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. ChemBioChem 8:610–612

Article  Google Scholar 

Geen H, Freeman R (1991) Band-selective radiofrequency pulses. Journal of Magnetic Resonance (1969) 93:93–141

Hansen DF, Kay LE (2011) Determining valine side-chain rotamer conformations in proteins from Methyl 13 C chemical shifts: application to the 360 kda half-proteasome. J Am Chem Soc 133:8272–8281

Article  MATH  Google Scholar 

Hansen DF, Vallurupalli P, Kay LE (2009) Measurement of Methyl group motional parameters of invisible, excited protein States by NMR spectroscopy. J Am Chem Soc 131:12745–12754

Article  MATH  Google Scholar 

Helmus JJ, Jaroniec CP (2013) Nmrglue: an open source Python package for the analysis of multidimensional NMR data. J Biomol NMR 55:355–367

Article  Google Scholar 

Kerfah R, Hamelin O, Boisbouvier J, Marion D (2015a) CH3-specific NMR assignment of Alanine, isoleucine, leucine and valine Methyl groups in high molecular weight proteins using a single sample. J Biomol NMR 63:389–402

Article  Google Scholar 

Kerfah R, Plevin MJ, Pessey O, Hamelin O, Gans P, Boisbouvier J (2015b) Scrambling free combinatorial labeling of alanine-β, isoleucine-δ1, leucine-proS and valine-proS Methyl groups for the detection of long range NOEs. J Biomol NMR 61:73–82

Article  Google Scholar 

Kupce E, Freeman R (1993) Polychromatic selective pulses. J Magn Reson Ser A 102:122–126

Article  ADS  Google Scholar 

Lee W, Rahimi M, Lee Y, Chiu A (2021) POKY: a software suite for multidimensional NMR and 3D structure calculation of biomolecules. Bioinformatics 37:3041–3042

Article  MATH  Google Scholar 

Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169

Article  ADS  MATH  Google Scholar 

Maisonneuve P, Caillet-Saguy C, Raynal B, Gilquin B, Chaffotte A, Pérez J, Zinn‐Justin S, Delepierre M, Buc H, Cordier F, Wolff N (2014) Regulation of the catalytic activity of the human phosphatase PTPN 4 by its PDZ domain. FEBS J 281:4852–4865

Article  Google Scholar 

Maisonneuve P, Caillet-Saguy C, Vaney M-C, Bibi-Zainab E, Sawyer K, Raynal B, Haouz A, Delepierre M, Lafon M, Cordier F, Wolff N (2016) Molecular basis of the interaction of the human protein tyrosine phosphatase Non-receptor type 4 (PTPN4) with the Mitogen-activated protein kinase p38γ. J Biol Chem 291:16699–16708

Article  Google Scholar 

Mishra SH, Frueh DP (2015) Assignment of Methyl NMR resonances of a 52 kda protein with residue-specific 4D correlation maps. J Biomol NMR 62:281–290

Article  Google Scholar 

Monneau YR, Rossi P, Bhaumik A, Huang C, Jiang Y, Saleh T, Xie T, Xing Q, Kalodimos CG (2017) Automatic Methyl assignment in large proteins by the MAGIC algorithm. J Biomol NMR 69:215–227

Article  Google Scholar 

Mulder FAA (2009) Leucine side-chain conformation and dynamics in proteins from 13 C NMR chemical shifts. Chembiochem: Eur J Chem Biology 10:1477–1479

Article  MATH  Google Scholar 

Nerli S, De Paula VS, McShan AC, Sgourakis NG (2021) Backbone-independent NMR resonance assignments of Methyl probes in large proteins. Nat Commun 12:691

Article  ADS  Google Scholar 

Pritišanac I, Degiacomi MT, Alderson TR, Carneiro MG, Siegal ABE, Baldwin G AJ (2017) Automatic assignment of Methyl-NMR spectra of supramolecular machines using graph theory. J Am Chem Soc 139:9523–9533

Article  Google Scholar 

Pritišanac I, Würz JM, Alderson TR, Güntert P (2019) Automatic structure-based NMR Methyl resonance assignment in large proteins. Nat Commun 10:4922

Article  ADS  MATH  Google Scholar 

Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (2000) NMR assignment and secondary structure determination of an octameric 110 kda protein using TROSY in triple resonance experiments. J Am Chem Soc 122:7543–7548

Article  Google Scholar 

Schanda P, Kupče Ē, Brutscher B (2005) SOFAST-HMQC experiments for recording Two-dimensional deteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211

Article  Google Scholar 

Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up Three-Dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043

Article  MATH  Google Scholar 

Sever AIM, Alderson TR, Rennella E, Aramini JM, Liu ZH, Harkness RW, Kay LE (2023) Activation of caspase-9 on the apoptosome as studied by methyl-TROSY NMR. Proc Natl Acad Sci USA 120:e2310944120

Article  Google Scholar 

Shaka AJ, Keeler J, Freeman R (1983) Evaluation of a new broadband decoupling sequence: WALTZ-16. Journal of Magnetic Resonance (1969) 53:313–340

Shukla VK, Siemons L, Hansen DF (2023) Intrinsic structural dynamics dictate enzymatic activity and Inhibition. Proc Natl Acad Sci USA 120:e2310910120

Article  Google Scholar 

Siemons L, Mackenzie HW, Shukla VK, Hansen DF (2019a) Intra-residue methyl–methyl correlations for valine and leucine residues in large proteins from a 3D-HMBC-HMQC experiment. J Biomol NMR 73:749–757

Article  Google Scholar 

Siemons L, Uluca-Yazgi B, Pritchard RB, McCarthy S, Heise H, Hansen DF (2019b) Determining isoleucine side-chain rotamer-sampling in proteins from 13 C chemical shift. Chem Commun 55:14107–14110

Article  Google Scholar 

Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622

Article  MATH  Google Scholar 

Sprangers R, Gribun A, Hwang PM, Houry WA, Kay LE (2005) Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc Natl Acad Sci USA 102:16678–16683

Article  ADS  Google Scholar 

Tugarinov V, Kay LE (2003a) Ile, Leu, and Val Methyl assignments of the 723-Residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878

Article  MATH  Google Scholar 

Tugarinov V, Kay LE (2003b) Side chain assignments of Ile Δ1 Methyl groups in high molecular weight proteins: an application to a 46 Ns tumbling molecule. J Am Chem Soc 125:5701–5706

Article  Google Scholar 

Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-Correlated relaxation enhanced 1H– 13 C NMR spectroscopy of Methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428

Article  Google Scholar 

Tugarinov V, Sprangers R, Kay LE (2007) Probing Side-Chain dynamics in the proteasome by relaxation violated coherence transfer NMR spectroscopy. J Am Chem Soc 129:1743–1750

Article  MATH  Google Scholar 

Tugarinov V, Baber JL, Clore GM (2023) A methyl-TROSY based 13 C relaxation dispersion NMR experiment for studies of chemical exchange in proteins. J Biomol NMR 77:83–91

Article  Google Scholar 

Comments (0)

No login
gif