Evaluating the use of lanthanide containing dendrimers for solvent paramagnetic relaxation enhancement

Abedi-Gaballu F et al (2018) PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today 12:177–190

Article  Google Scholar 

Anthis NJ, Clore GM (2015) Visualizing transient dark States by NMR spectroscopy. Q Rev Biophys 48:35–116

Article  Google Scholar 

Bermejo GA, Strub MP, Ho C, Tjandra N (2009) Determination of the solution-bound conformation of an amino acid binding protein by NMR paramagnetic relaxation enhancement: use of a single flexible paramagnetic probe with improved Estimation of its sampling space. J Am Chem Soc 131:9532–9537

Article  Google Scholar 

Bermejo GA, Strub MP, Ho C, Tjandra N (2010) Ligand-free open-closed transitions of periplasmic binding proteins: the case of glutamine-binding protein. Biochemistry 49:1893–1902

Article  Google Scholar 

Bober Z, Bartusik-Aebisher D, Aebisher D (2022) Application of dendrimers in anticancer diagnostics and therapy. Molecules 27

Brand T et al (2007) Residue-specific NH exchange rates studied by NMR diffusion experiments. J Magn Reson 187:97–104

Article  ADS  Google Scholar 

Caravan P, Greenfield MT, Bulte JW (2001) Molecular factors that determine curie spin relaxation in dysprosium complexes. Magn Reson Med 46:917–922

Article  Google Scholar 

Chauhan AS (2018) Dendrimers for drug delivery. Molecules 23

Cotten ML et al (2024) NMR chemical shift assignment of drosophila odorant binding protein 44a in complex with 8(Z)-eicosenoic acid. Biomol NMR Assign 18:129–134

Article  Google Scholar 

Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364 table of contents

Article  Google Scholar 

De Faveri C, Mattheisen JM, Sakmar TP, Coin I (2024) Noncanonical amino acid tools and their application to membrane protein studies. Chem Rev 124:12498–12550

Article  Google Scholar 

Delaglio F et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

Article  Google Scholar 

Do C et al (2020) Gadolinium-Based contrast agent use, their safety, and practice evolution. Kidney360 1:561–568

Article  Google Scholar 

Fatemi SM, Fatemi SJ, Abbasi Z (2020) PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies. Polym Bull 77:6671–6691

Article  Google Scholar 

Gallo E et al (2020) Systematic overview of soft materials as a novel frontier for MRI contrast agents. RSC Adv 10:27064–27080

Article  ADS  Google Scholar 

Giannoulis A, Ben-Ishay Y, Goldfarb D (2021) Characteristics of Gd(III) spin labels for the study of protein conformations. Methods Enzymol 651:235–290

Article  Google Scholar 

Giovenzana GB, Lattuada L, Negri R (2017) Recent advances in bifunctional paramagnetic chelates for MRI. Isr J Chem 57:825–832

Article  Google Scholar 

Gong Z, Gu XH, Guo DC, Wang J, Tang C (2017) Protein structural ensembles visualized by solvent paramagnetic relaxation enhancement. Angew Chem Int Ed Engl 56:1002–1006

Article  Google Scholar 

Gong Z, Schwieters CD, Tang C (2018) Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics. Methods 148:48–56

Article  Google Scholar 

He Y, Cotten ML, Yin J, Yuan Q, Tjandra N (2023a) Expression and purification of drosophila OBP44a with the aids of LC-MS and NMR. Protein Expr Purif 212:106354

Article  Google Scholar 

He Y, Cotten ML, Yin J, Yuan Q, Tjandra N (2023b) Expression and purification of drosophila OBP44a with the aids of LC-MS and NMR. Protein Exp Purif 212:106354

Article  Google Scholar 

Hocking HG, Zangger K, Madl T (2013) Studying the structure and dynamics of biomolecules by using soluble paramagnetic probes. ChemPhysChem 14:3082–3094

Article  Google Scholar 

Iwahara J, Tang C, Marius Clore G (2007) Practical aspects of (1)H transverse paramagnetic relaxation enhancement measurements on macromolecules. J Magn Reson 184:185–195

Article  ADS  Google Scholar 

Iwahara J, Pettitt BM, Yu B (2023) Direct measurements of biomolecular electrostatics through experiments. Curr Opin Struct Biol 82:102680

Article  Google Scholar 

Iyad N, Alkhatib MSA, S.G., Hjouj M (2023) Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: literature review. Eur J Radiol Open 11:100503

Article  Google Scholar 

Jahr N, Fiedler E, Günther R, Hofmann H-J, Berger S (2011) NH exchange in point mutants of human ubiquitin. Int J Biol Macromol 49:154–160

Article  Google Scholar 

Jurt S, Zerbe O (2012) A study on the influence of fast amide exchange on the accuracy of (15)N relaxation rate constants. J Biomol NMR 54:389–400

Article  Google Scholar 

Kellner R et al (2009) SEMPRE: spectral editing mediated by paramagnetic relaxation enhancement. J Am Chem Soc 131:18016–18017

Article  Google Scholar 

Kim HK, Lee GH, Chang Y (2018) Gadolinium as an MRI contrast agent. Future Med Chem 10:639–661

Article  Google Scholar 

Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57:2271–2286

Article  Google Scholar 

Koehler J, Meiler J (2011) Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. Prog Nucl Magn Reson Spectrosc 59:360–389

Article  Google Scholar 

Kooshapur H, Schwieters CD, Tjandra N (2018a) Conformational ensemble of disordered proteins probed by solvent paramagnetic relaxation enhancement (sPRE). Angew Chem Int Ed Engl 57:13519–13522

Article  Google Scholar 

Kooshapur H, Schwieters CD, Tjandra N (2018b) Sep 12 Conformational ensemble of disordered proteins probed by solvent Paramagnetic Relaxation Enhancement (sPRE). Angewandte Chemie (International ed. in English) 57

Lange OF et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475

Article  ADS  Google Scholar 

Ledwitch K, Kunze G, Okwei E, Sala D, Meiler J (2024) Non-canonical amino acids for site-directed spin labeling of membrane proteins. Curr Opin Struct Biol 89:102936

Article  Google Scholar 

Lenard AJ, Mulder FAA, Madl T (2022) Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. Prog Nucl Magn Reson Spectrosc 132–133:113–139

Article  Google Scholar 

Linser R, Fink U, Reif B (2009) Probing surface accessibility of proteins using paramagnetic relaxation in solid-state NMR spectroscopy. J Am Chem Soc 131:13703–13708

Article  Google Scholar 

Longmire M, Choyke PL, Kobayashi H (2008) Dendrimer-based contrast agents for molecular imaging. Curr Top Med Chem 8:1180–1186

Article  Google Scholar 

Lux J, Sherry AD (2018) Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo. Curr Opin Chem Biol 45:121–130

Article  Google Scholar 

McMahon MT, Bulte JWM (2018) Two decades of dendrimers as versatile MRI agents: a Tale with and without metals. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:e1496

Article  Google Scholar 

Mekuria SL, Debele TA, Tsai HC (2016) PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. RSC Adv 6:63761–63772

Article  ADS  Google Scholar 

Mulder FAA (2021) NMR spectroscopy charges into protein surface electrostatics. Proc Natl Acad Sci U S A 118

Muntener T, Joss D, Haussinger D, Hiller S (2022) Pseudocontact shifts in biomolecular NMR spectroscopy. Chem Rev 122:9422–9467

Article  Google Scholar 

Opina AC et al (2015) Preparation and long-term biodistribution studies of a PAMAM dendrimer G5-Gd-BnDOTA conjugate for lymphatic imaging. Nanomed (Lond) 10:1423–1437

Article  Google Scholar 

Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405

Article  Google Scholar 

Otting* G (2001) Identification of protein surfaces by NMR measurements with a paramagnetic Gd(III) chelate. (December 22

Qiao Z, Shi XY (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 44:1–27

Article  Google Scholar 

Ravera E, Gigli L, Fiorucci L, Luchinat C, Parigi G (2022) The evolution of paramagnetic NMR as a tool in structural biology. Phys Chem Chem Phys 24:17397–17416

Article  Google Scholar 

Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29:365–376

Article  Google Scholar 

Roopnarine O, Thomas DD (2024) Structural dynamics of protein interactions using Site-Directed spin labeling of cysteines to measure distances and rotational dynamics with EPR spectroscopy. Appl Magn Reson 55:79–100

Article  Google Scholar 

Sarode RJ, Mahajan HS (2024) Dendrimers for drug delivery: an overview of its classes, synthesis, and applica

Comments (0)

No login
gif