Pham T, Telias I, Piraino T et al (2018) Asynchrony consequences and management. Crit Care Clin 34:325–341. https://doi.org/10.1016/j.ccc.2018.03.008
Subirà C, De Haro C, Magrans R et al (2018) Minimizing asynchronies in mechanical ventilation: current and future trends. Respir Care 63:464–478. https://doi.org/10.4187/respcare.05949
Jonkman AH, Telias I, Spinelli E et al (2023) The oesophageal balloon for respiratory monitoring in ventilated patients: updated clinical review and practical aspects. Eur Respir Rev Off J Eur Respir Soc 32:220186. https://doi.org/10.1183/16000617.0186-2022
Docci M, Rodrigues A, Dubo S et al (2024) Does patient-ventilator asynchrony really matter? Curr Opin Crit Care. https://doi.org/10.1097/MCC.0000000000001225
Beitler JR, Sands SA, Loring SH et al (2016) Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med 42:1427–1436. https://doi.org/10.1007/s00134-016-4423-3
Article PubMed PubMed Central Google Scholar
Bertoni M, Spadaro S, Goligher EC (2020) Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care Lond Engl 24:106. https://doi.org/10.1186/s13054-020-2777-y
Goligher EC, Jonkman AH, Dianti J et al (2020) Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med 46:2314–2326. https://doi.org/10.1007/s00134-020-06288-9
Article CAS PubMed PubMed Central Google Scholar
Hashimoto H, Yoshida T, Firstiogusran AMF et al (2023) Asynchrony injures lung and diaphragm in acute respiratory distress syndrome. Crit Care Med 51:e234–e242. https://doi.org/10.1097/CCM.0000000000005988
Article CAS PubMed Google Scholar
Damiani LF, Engelberts D, Bastia L et al (2022) Impact of reverse triggering dyssynchrony during lung-protective ventilation on diaphragm function: an experimental model. Am J Respir Crit Care Med 205:663–673. https://doi.org/10.1164/rccm.202105-1089OC
Article CAS PubMed Google Scholar
Delisle S, Ouellet P, Bellemare P et al (2011) Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care 1:42. https://doi.org/10.1186/2110-5820-1-42
Article PubMed PubMed Central Google Scholar
Bosma K, Ferreyra G, Ambrogio C et al (2007) Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med 35:1048–1054. https://doi.org/10.1097/01.CCM.0000260055.64235.7C
Thille AW, Rodriguez P, Cabello B et al (2006) Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 32:1515–1522. https://doi.org/10.1007/s00134-006-0301-8
Kyo M, Shimatani T, Hosokawa K et al (2021) Patient–ventilator asynchrony, impact on clinical outcomes and effectiveness of interventions: a systematic review and meta-analysis. J Intensive Care 9:50. https://doi.org/10.1186/s40560-021-00565-5
Article PubMed PubMed Central Google Scholar
Blanch L, Villagra A, Sales B et al (2015) Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 41:633–641. https://doi.org/10.1007/s00134-015-3692-6
De Haro C, Ochagavia A, López-Aguilar J et al (2019) Patient-ventilator asynchronies during mechanical ventilation: current knowledge and research priorities. Intensive Care Med Exp 7:43. https://doi.org/10.1186/s40635-019-0234-5
Article PubMed PubMed Central Google Scholar
Jonkman AH, Holleboom MC, De Vries HJ et al (2022) Expiratory muscle relaxation-induced ventilator triggering. Chest 161:e337–e341. https://doi.org/10.1016/j.chest.2022.01.070
Article PubMed PubMed Central Google Scholar
Mellott KG, Grap MJ, Munro CL et al (2014) Patient ventilator asynchrony in critically ill adults: frequency and types. Heart Lung 43:231–243. https://doi.org/10.1016/j.hrtlng.2014.02.002
Article PubMed PubMed Central Google Scholar
De Wit M, Pedram S, Best AM, Epstein SK (2009) Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care 24:74–80. https://doi.org/10.1016/j.jcrc.2008.08.011
Article PubMed PubMed Central Google Scholar
Zhou Y, Holets SR, Li M et al (2021) Etiology, incidence, and outcomes of patient–ventilator asynchrony in critically-ill patients undergoing invasive mechanical ventilation. Sci Rep 11:12390. https://doi.org/10.1038/s41598-021-90013-z
Article CAS PubMed PubMed Central Google Scholar
Colombo D, Cammarota G, Alemani M et al (2011) Efficacy of ventilator waveforms observation in detecting patient–ventilator asynchrony. Crit Care Med 39:2452–2457. https://doi.org/10.1097/CCM.0b013e318225753c
Chen Y, Zhang K, Zhou C et al (2023) Automated evaluation of typical patient–ventilator asynchronies based on lung hysteretic responses. Biomed Eng OnLine 22:102. https://doi.org/10.1186/s12938-023-01165-0
Article PubMed PubMed Central Google Scholar
Jonkman AH, Roesthuis LH, De Boer EC et al (2020) Inadequate assessment of patient-ventilator interaction due to suboptimal diaphragm electrical activity signal filtering. Am J Respir Crit Care Med 202:141–144. https://doi.org/10.1164/rccm.201912-2306LE
Sinderby C, Liu S, Colombo D et al (2013) An automated and standardized neural index to quantify patient-ventilator interaction. Crit Care 17:R239. https://doi.org/10.1186/cc13063
Article PubMed PubMed Central Google Scholar
Butler R, Monsalve M, Thomas GW et al (2018) Estimating time physicians and other health care workers spend with patients in an intensive care unit using a sensor network. Am J Med 131:972.e9-972.e15. https://doi.org/10.1016/j.amjmed.2018.03.015
Chatburn RL, Mireles-Cabodevila E (2020) 2019 year in review: patient-ventilator synchrony. Respir Care 65:558–572. https://doi.org/10.4187/respcare.07635
Grosan C, Abraham A (2011) Intelligent systems: a modern approach. Springer Berlin/Heidelberg, Berlin, Heidelberg
Nakatsu R (2009) Diagrammatic reasoning in AI, 1st edn. Wiley, Hoboken
Siebig S, Kuhls S, Imhoff M et al (2010) Intensive care unit alarms—How many do we need? Crit Care Med 38:451–456. https://doi.org/10.1097/CCM.0b013e3181cb0888
Baedorf-Kassis EN, Glowala J, Póka KB et al (2023) Reverse triggering neural network and rules-based automated detection in acute respiratory distress syndrome. J Crit Care 75:154256. https://doi.org/10.1016/j.jcrc.2023.154256
Article PubMed PubMed Central Google Scholar
Rodriguez PO, Tiribelli N, Gogniat E et al (2020) Automatic detection of reverse-triggering related asynchronies during mechanical ventilation in ARDS patients using flow and pressure signals. J Clin Monit Comput 34:1239–1246. https://doi.org/10.1007/s10877-019-00444-3
Gholami B, Phan TS, Haddad WM et al (2018) Replicating human expertise of mechanical ventilation waveform analysis in detecting patient-ventilator cycling asynchrony using machine learning. Comput Biol Med 97:137–144. https://doi.org/10.1016/j.compbiomed.2018.04.016
Comments (0)