International Diabetes Federation (2021) IDF Diabetes Atlas 10th edition. International Diabetes Federation, Brussels. https://www.diabetesatlas.org
Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW (2019) Global trends in diabetes complications: a review of current evidence. Diabetologia 62:3–16. https://doi.org/10.1007/s00125-018-4711-2
International Diabetes Federation (2016) Cost-effective solutions for the prevention of type 2 diabetes. International Diabetes Federation, Brussels
Dahlen AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, Schioth HB (2022) Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Front Pharmacol 12:807548–807563. https://doi.org/10.3389/fphar.2021.807548
Article CAS PubMed PubMed Central Google Scholar
Newman DJ (2024) Non-insulin-based drug entities used to treat diabetes type 2 disease (T2DM), based on natural products from all sources. J Nat Prod 87:629–637. https://doi.org/10.1021/acs.jnatprod.3c00886
Article CAS PubMed Google Scholar
Hussain H, Nazir M, Saleem M, Al-Harrasi A, Green E, Green IR (2021) Fruitful decade of fungal metabolites as anti-diabetic agents from 2010 to 2019: emphasis on α-glucosidase inhibitors. Phytochem Rev 20:145–179. https://doi.org/10.1007/s11101-020-09733-1
Nugent LK, Sihanonth P, Thienhirun S, Whalley AJS (2005) Biscogniauxia: a genus of latent invaders. Mycologist 19:40–43. https://doi.org/10.1017/S0269915X05001060
Purbaya S, Harneti D, Safriansyah W, Rahmawati R, Wulandari AP, Mulyani Y, Supratman U (2023) Secondary metabolites of Biscogniauxia: distribution, chemical diversity, bioactivity, and implications of the occurrence. Toxins 15:686–711. https://doi.org/10.3390/toxins15120686
Article CAS PubMed PubMed Central Google Scholar
Sritharan T, Kumar NS, Jayasinghe L, Araya H, Fujimoto Y (2019) Isocoumarins and dihydroisocoumarins from the endophytic fungus Biscogniauxia capnodes isolated from the fruits of Averrhoa carambola. Nat Prod Commun 14:1–3. https://doi.org/10.1177/1934578X19851969
Huang L, Ding L, Li X, Wang N, Yan Y, Yang M, Cui W, Naman CB, Cheng K, Zhang W, Zhang B, Jin H, He S (2019) A new lateral root growth inhibitor from the sponge-derived fungus Aspergillus sp. LS45. Bioorg Med Chem Lett 29:1593–1596. https://doi.org/10.1016/j.bmcl.2019.04.051
Article CAS PubMed Google Scholar
Superchi S, Scafato P, Gorecki M, Pescitelli G (2018) Absolute configuration determination by quantum mechanical calculation of chiroptical spectra: basics and applications to fungal metabolites. Curr Med Chem 25:287–320. https://doi.org/10.2174/0929867324666170310112009
Article CAS PubMed Google Scholar
Wang J, Xu CC, Tang H, Su L, Chou Y, Soong K, Li J, Zhuang CL, Luo YP, Zhang W (2018) Osteoclastogenesis inhibitory polyketides from the sponge-associated fungus Xylaria feejeensis. Chem Biodivers 15:1800358–1800365. https://doi.org/10.1002/cbdv.201800358
Hussain H, Ahmed I, Schulz B, Draeger S, Krohn K (2012) Pyrenocines J-M: four new pyrenocines from the endophytic fungus, Phomopsis sp. Fitoterapia 83:523–526. https://doi.org/10.1016/j.fitote.2011.12.017
Article CAS PubMed Google Scholar
Zinad DS, Shaaban KA, Abdalla MA, Islam MT, Schuffler A, Laatsch H (2011) Bioactive isocoumarins from a terrestrial Streptomyces sp. ANK302. Nat Prod Commun 6:45–48. https://doi.org/10.1177/1934578X1100600111
Article CAS PubMed Google Scholar
Saeed A, Ehsan S (2005) An efficient synthesis of 8-hydroxy-6,7-dimethoxy-3-methylisocoumarin (6-O-methylreticulol). Chem Heterocycl Comp 41:1381–1385. https://doi.org/10.1007/s10593-006-0005-6
Saeed A (2007) Microwave-assisted synthesis of cAMP phosphodiesterase inhibitor 8-hydroxy-6,7-dimethoxy-3-hydroxymethylisocoumarin. Synth Commun 37:1485–1490. https://doi.org/10.1080/00397910701228778
Hallock YF, Clardy J, Kenfield DS, Strobel G (1988) De-O-methyldiaporthin, a phytotoxin from Drechslera siccans. Phytochemistry 27:3123–3125. https://doi.org/10.1016/0031-9422(88)80012-8
Harris JP, Mantle PG (2001) Biosynthesis of diaporthin and orthosporin by Aspergillus ochraceus. Phytochemistry 57:165–169. https://doi.org/10.1016/s0031-9422(01)00004-8
Article CAS PubMed Google Scholar
Okuno T, Oikawa S, Goto T, Sawai K, Shirahama H, Matsumoto T (1986) Structures and phytotoxicity of metabolites from Valsa ceratosperma. Agric Biol Chem 50:997–1001. https://doi.org/10.1080/00021369.1986.10867484
Kamisuki S, Ishimaru C, Onoda K, Kuriyama I, Ida N, Sugawara F, Yoshida H, Mizushina Y (2007) Nodulisporol and nodulisporone, novel specific inhibitors of human DNA polymerase λ from a fungus, Nodulisporium sp. Bioorg Med Chem 15:3109–3114. https://doi.org/10.1016/j.bmc.2007.02.052
Article CAS PubMed Google Scholar
Bell AA, Stipanovic RD, Puhalla JE (1976) Pentaketide metabolites of Verticillium dahlia. Tetrahedron 32:1353–1356. https://doi.org/10.1016/0040-4020(76)85009-0
Amand S, Langenfeld A, Blond A, Dupont J, Nay B, Prado S (2012) Guaiane sesquiterpenes from Biscogniauxia nummularia featuring potent antigerminative activity. J Nat Prod 75:798–801. https://doi.org/10.1021/np2009913
Article CAS PubMed Google Scholar
Li Y, Liu J, Yang XW (2013) Four new eudesmane-type sesquiterpenoid lactones from atractylenolide II by biotransformation of rat hepatic microsomes. J Asian Nat Prod Res 15:344–356. https://doi.org/10.1080/10286020.2013.764867
Article CAS PubMed Google Scholar
Dermenci A, Selig PS, Domaoal RA, Spasov KA, Anderson KS, Miller SJ (2011) Quasi-biomimetic ring contraction catalyzed by a cysteine-based nucleophile: total synthesis of sch-642305, some analogs and their putative anti-HIV activities. Chem Sci 2:1568–1572. https://doi.org/10.1039/C1SC00221J
Li HJ, Lin YC, Yao JH, Vrijmoed LL, Jones GE (2004) Two new metabolites from the mangrove endophytic fungus no. 2524. J Asian Nat Prod Res 6:185–191. https://doi.org/10.1080/102860201653237
Article CAS PubMed Google Scholar
Ur Rehman N, Halim SA, Al-Azri M, Khan M, Khan A, Rafiq K, Al-Rawahi A, Csuk R, Al-Harrasi A (2020) Triterpenic acids as non-competitive α-glucosidase inhibitors from Boswellia elongata with structure-activity relationship: in vitro and in silico studies. Biomolecules 10:751–769. https://doi.org/10.3390/biom10050751
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Yang X, Gan J, Chen S, Xiao ZX, Cao Y (2022) CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res 50:159–164. https://doi.org/10.1093/nar/gkac394
Sakulkeo O, Wattanapiromsakul C, Pitakbut T, Dej-Adisai S (2022) Alpha-glucosidase inhibition and molecular docking of isolated compounds from traditional Thai medicinal plant, Neuropeltis racemosa Wall. Molecules 27:639–652. https://doi.org/10.3390/molecules27030639
Article CAS PubMed PubMed Central Google Scholar
Peytam F, Takalloobanafshi G, Saadattalab T, Norouzbahari M, Emamgholipour Z, Moghimi S, Firoozpour L, Bijanzadeh HR, Faramarzi MA, Mojtabavi S, Rashidi-Ranjbar P, Karima S, Pakraad R, Foroumadi A (2021) Design, synthesis, molecular docking, and in vitro α-glucosidase inhibitory activities of novel 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines against yeast and rat α-glucosidase. Sci Rep 11:11911–11928. https://doi.org/10.1038/s41598-021-91473-z
Article CAS PubMed PubMed Central Google Scholar
Li C, Nitka MV, Gloer JB, Campbell J, Shearer CA (2003) Annularins A−H: new polyketide metabolites from the freshwater aquatic fungus Annulatascus triseptatus. J Nat Prod 66:1302–1306. https://doi.org/10.1021/np030225y
Comments (0)