Grandifolins A–D: three 6/6/5 abietane diterpenes and an abietane diterpene from

Wu YB, Ni ZY, Shi QW, Dong M, Kiyota H, Gu YC, Cong B (2012) Constituents from Salvia species and their biological activities. Chem Rev 112:5967–6026. https://doi.org/10.1021/cr200058f

Article  CAS  PubMed  Google Scholar 

Wu Z, Raven PH (eds) (1994) Flora of China, vol 17. Science Press, Missouri Botanical Garden Press, Beijing

Google Scholar 

Kuroda C, Hanai R, Nagano H, Tori M, Gong X (2012) Diversity of furanoeremophilanes in major Ligularia species in the Hengduan Mountains. Nat Prod Commun 7:539–548. https://doi.org/10.1177/1934578X1200700431

Article  CAS  PubMed  Google Scholar 

Kuroda C, Hanai R, Tori M, Okamoto Y, Saito Y, Nagano H, Ohsaki A, Hirota H, Kawahara T, Gong X (2014) Diversity in furanoeremophilane composition produced by Ligularia species (Asteraceae) in the Hengduan Mountains area of China. J Synth Org Chem Jpn 72:717–725. https://doi.org/10.5059/yukigoseikyokaishi.72.717

Article  CAS  Google Scholar 

Ohsaki A, Kawamata S, Ozawa M, Kishida A, Gong X, Kuroda C (2011) Salviskinone A, a diterpene with a new skeleton from Salvia przewalskii. Tetrahedron Lett 52:1375–1377. https://doi.org/10.1016/j.tetlet.2011.01.080

Article  CAS  Google Scholar 

Tsukada H, Kawabe H, Ohtaka A, Saito Y, Okamoto Y, Tori M, Kagechika H, Hirota H, Gong X, Kuroda C, Ohsaki A (2016) Two new diterpenoids from Salvia przewarskii. Nat Prod Commun 11:159–161. https://doi.org/10.1177/1934578X1601100206

Article  PubMed  Google Scholar 

Kawabe H, Suzuki R, Hirota H, Matsuzaki K, Gong X, Ohsaki A (2017) A new diterpenoid with a rearranged skeleton from Salvia prattii. Nat Prod Commun 12:1177–1179. https://doi.org/10.1177/1934578X1701200807

Article  Google Scholar 

Rodríguez B (2003) 1H and 13C NMR spectral assignments of some natural abietane diterpenoids. Spectral assignments and reference data. Magn Reson Chem 41:741–746. https://doi.org/10.1002/mrc.1245

Article  CAS  Google Scholar 

Carreño MC, Ruano JLG, Toledo MA (2000) Enantioselective synthesis of (+)-royleanone from sulfinyl quinones. Chem Eur J 6:288–291. https://doi.org/10.1002/(SICI)1521-3765(20000117)6:2%3c288::AID-CHEM288%3e3.0.CO;2-2

Article  PubMed  Google Scholar 

Jonathan LT, Che CT, Pezzuto JM, Fong HHS, Farnsworth NR (1989) 7-O-methylhorminone and other cytotoxic diterpene quinones from Lepechinia bullata. J Nat Prod 52:571–575. https://doi.org/10.1021/np50063a016

Article  CAS  PubMed  Google Scholar 

Matsumoto T, Harada S (1979) The total synthesis of (+)-taxoquinone, (–)-7α-acetoxyroyleanone, (–)-dehydroroyleanone, (–)-horminone, (–)7-oxoroyleanone, and (+)-inuroyleanol. Bull Chem Soc Jpn 52:1459–1463. https://doi.org/10.1246/bcsj.52.1459

Article  CAS  Google Scholar 

Bajpai VK, Na M, Kang SC (2010) The role of bioactive substances in controlling foodborne pathogens derived from Metasequoia glyptostroboides Miki ex Hu. Food Chem Toxicol 48:1945–1949. https://doi.org/10.1016/j.fct.2010.04.041

Article  CAS  PubMed  Google Scholar 

Naman CB, Gromovsky AD, Vela CM, Fletcher JN, Gupta G, Varikuti S, Zhu X, Zywot EM, Chai H, Werbovetz KA, Satoskar AR, Kinghorn AD (2016) Antileishmanial and cytotoxic activity of some highly oxidized abietane diterpenoids from the bald cypress, Taxodium distichum. J Nat Prod 79:598–606. https://doi.org/10.1021/acs.jnatprod.5b01131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tada M, Kurabe J, Yoshida T, Ohkanda T, Matsumoto Y (2010) Syntheses and antibacterial activities of diterpene catechol derivatives with abietane, totarane and phodocarpane skeletons against methicillin-resistant Staphylococcus aureus and Propionibakuterium acnes. Chem Pharm Bull 58:818–824. https://doi.org/10.1248/cpb.58.818

Article  CAS  Google Scholar 

Katoh T, Akagi T, Noguchi C, Kajimoto T, Node M, Tanaka R, Nishizawa née Iwamoto M, Ohtsu H, Suzuki N, Saito K (2007) Synthesis of DL-standishinal and its related compounds for the studies on structure-activity relationship of inhibitory activity against aromatase. Bioorg Med Chem 15:2736–2748. https://doi.org/10.1016/j.bmc.2007.01.031

Article  CAS  PubMed  Google Scholar 

Huesorodriguez J, Jimeno M, Rodriguez B, Savona G, Bruno M (1983) Abietane diterpenoids from the root of Salvia phlomoides. Phytochemistry 22:2005–2009. https://doi.org/10.1016/0031-9422(83)80033-8

Article  CAS  Google Scholar 

Su WC, Fang JM, Cheng YS (1996) Diterpenoids from leaves of Cryptomeria japonica. Phytochemistry 41:255–261. https://doi.org/10.1016/0031-9422(95)00417-3

Article  CAS  Google Scholar 

Dang J, Cui Y, Pei J, Yue H, Liu Z, Wang W, Jiao L, Mei L, Wang Q, Tao Y, Shao Y (2018) Efficient separation of four antibacterial diterpenes from the roots of Salvia prattii using nonaqueous hydrophilic solid-phase extraction followed by preparative high-performance liquid chromatography. Molecules 23:623. https://doi.org/10.3390/molecules23030623

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fraga BM, Díaz CE, Guadaño A, González-Coloma AG (2005) Diterpenes from Salvia broussonetii transformed roots and their insecticidal activity. J Agric Food Chem 53:5200–5206. https://doi.org/10.1021/jf058045c

Article  CAS  PubMed  Google Scholar 

Zheng HB, Zhang T, Row KH, Xie WD (2012) Tricupone, a rearranged diterpenoid from Salvia tricuspis. Bull Korean Chem Soc 33:1360–1362. https://doi.org/10.5012/bkcs.2012.33.4.1360

Article  CAS  Google Scholar 

Syamasundar KV, Vinodh G, Srinivas KVNS, Srinivasulu B (2012) A new abietane diterpenoid from Plectranthus bishopianus Benth. Helv Chim Acta 95:643–646. https://doi.org/10.1002/hlca.201100425

Article  CAS  Google Scholar 

Comments (0)

No login
gif