Leptomonines A and B, two novel rare benzyltetrahydroisoquinoline -oxides from the aerial parts of as potential COX-2 inhibitors: in vitro and in silico studies

Urgamal M, Oyuntsetseg B, Nyambayar D, Dulamsuren C, Sanchir C, Jamsran T (2014) Conspectus of the vascular plants of Mongolia. Admon Press, Ulaanbaatar

Google Scholar 

Ligaa U, Davaasuren B, Ninjil N (2005) Medicinal Plants of Mongolia Used in Western and Eastern Medicine. JCK Printing, Ulaanbaatar

Tserenbaljid G (2002) The colour atlas of antropophilus plants of Mongolia. Admon Press, Ulaanbaatar

Google Scholar 

Abdullah S (2013) Anticancer drug capable of clearing blood and diminishing inflammation. CN102886014B

Boldbaatar D, El Seedi HR, Findakly M, Jabri S, Javzan B, Choidash B, Göransson U, Hellman B (2014) Antigenotoxic and antioxidant effects of the Mongolian medicinal plant Leptopyrum fumarioides (L): an in vitro study. J Ethnopharmacol 155:599–606. https://doi.org/10.1016/j.jep.2014.06.005

Article  PubMed  Google Scholar 

Nikolaev S, Zandanov A, Sambueva Z, IaG R, Fedorov A (2012) Effect of Leptopyrum fumarioides (Ranunculaceae) extract on choleresis in white rats with toxic hepatitis. Clin Exp Gastroenterol 40:21–24

Google Scholar 

Doncheva T, Solongo A, Kostova N, OdGerelt Y, Selenge D, Philipov S (2015) Leptopyrine, new alkaloid from Leptopyrum fumarioides L. (Ranunculaceae). Nat Prod Res 29:853–856

Article  PubMed  CAS  Google Scholar 

Solongo A, Doncheva T, Delgerbat B, Selenge D (2022) Review of phytochemical and some biological activity of Leptopyrum fumarioides (L.) Reichenb. Proc Univ Appl Chem Biotechnol 12:231–237

CAS  Google Scholar 

Solongo A, Doncheva T, Kostova N, Yadamsuren GO, Philipov S, Ivanovska N (2020) Alkaloids from the aerial parts of Leptopyrum fumarioides express immunomodulatory activity. J Asian Nat Prod Res 22:886–894

Article  PubMed  CAS  Google Scholar 

Van MJ, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. In: Cree IA (ed) Cancer cell culture: methods and protocols. Humana Press, Totowa, pp 237–245

Google Scholar 

Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J Chem Inf Model 61:3891–3898. https://doi.org/10.1021/acs.Jcim.1c00203

Article  PubMed  PubMed Central  CAS  Google Scholar 

Orlando BJ, Malkowski MG (2016) Crystal structure of rofecoxib bound to human cyclooxygenase-2. Acta Cryst F 72:772–776. https://doi.org/10.1107/S2053230X16014230

Article  CAS  Google Scholar 

Mehallah H, Djebli N, Khanh PN, Ha NX, Ha VT, Huong TT, Cuong NM (2024) In silico and in vivo study of anti-inflammatory activity of Morinda longissima (Rubiaceae) extract and phytochemicals for treatment of inflammation-mediated diseases. J Ethnopharmacol 328:118051. https://doi.org/10.1016/j.jep.2024.118051

Article  PubMed  CAS  Google Scholar 

Lee SS, Lai YC, Chen CK, Tseng LH, Wang CY (2007) Characterization of isoquinoline alkaloids from Neolitsea sericea var. aurata by HPLC-SPE-NMR. J Nat Prod 70:637–642. https://doi.org/10.1021/np060636p

Article  PubMed  CAS  Google Scholar 

Wang R, Liu Y, Shi G, Zhou J, Li J, Li L, Yuan J, Li X, Yu D (2020) Bioactive bisbenzylisoquinoline alkaloids from the roots of Stephania tetrandra. Bioorg Chem 98:103697. https://doi.org/10.1016/j.bioorg.2020.103697

Article  PubMed  CAS  Google Scholar 

Dembitsky VM, Gloriozova TA, Poroikov VV (2015) Naturally occurring plant isoquinoline N-oxide alkaloids: Their pharmacological and SAR activities. Phytomedicine 22:183–202. https://doi.org/10.1016/j.phymed.2014.11.002

Article  PubMed  CAS  Google Scholar 

Zhou Q, Fu YH, Li XB, Chen GY, Wu SY, Song XP, Liu YP, Han CR (2015) Bioactive benzylisoquinoline alkaloids from Artabotrys hexapetalus. Phytochem Lett 11:296–300. https://doi.org/10.1016/j.phytol.2015.01.017

Article  CAS  Google Scholar 

Suau R, Segura RG, Silva MV, Valpuesta M, Dominguez D, Castedo L (1995) Structural and conformational analysis of naturally occurring cularine N-oxide alkaloids. Heterocycles 41:2575–2586

Article  CAS  Google Scholar 

Costa EV, Soares LN, Chaar JS, Silva VR, Santos LS, Koolen HH, Silva FM, Tavares JF, Zengin G, Soares MB (2021) Benzylated dihydroflavones and isoquinoline-derived alkaloids from the bark of Diclinanona calycina (Annonaceae) and their cytotoxicities. Molecules 26:3714. https://doi.org/10.3390/molecules26123714

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee SS, Doskotch RW (1999) Four dimeric aporphine-containing alkaloids from Thalictrum fauriei. J Nat Prod 62:803–810. https://doi.org/10.1021/np980311b

Article  PubMed  CAS  Google Scholar 

Zheng XK, Li DD, Yan H, Li M, He JL, Feng WS (2013) Two new alkaloids from Corydalis humosa. J Asian Nat Prod Res 15:1158–1162

Article  PubMed  CAS  Google Scholar 

Doskotch RW, Phillipson J, Ray A, Beal JL (1971) Alkaloids of thalictrum. XII. Synthesis of the thalictrum alkaloids, adiantifoline, and thalicmidine. J Org Chem 36:2409–2413. https://doi.org/10.1021/jo00816a006

Article  PubMed  CAS  Google Scholar 

Parameswaran N, Patial S (2010) Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10

Article  PubMed  PubMed Central  Google Scholar 

Yang CM, Yang CC, Hsiao LD, Yu CY, Tseng HC, Hsu CK, Situmorang JH (2021) Upregulation of COX-2 and PGE2 induced by TNF-α mediated through TNFR1/MitoROS/PKCα/P38 MAPK, JNK1/2/FoxO1 cascade in human cardiac fibroblasts. J Inflamm Res. https://doi.org/10.2147/jIR.S313665

Article  PubMed  PubMed Central  Google Scholar 

Karthein R, Dietz R, Nastainczyk W, Ruf HH (1988) Higher oxidation states of prostaglandin H synthase: EPR study of a transient tyrosyl radical in the enzyme during the peroxidase reaction. Eur J Biochem 171:313–320. https://doi.org/10.1111/j.1432-1033.1988.tb13792.x

Article  PubMed  CAS  Google Scholar 

Dadashpour S, Tuylu Kucukkilinc T, Unsal Tan O, Ozadali K, Irannejad H, Emami S (2015) Design, synthesis and in vitro study of 5, 6-diaryl-1, 2, 4-triazine-3-ylthioacetate derivatives as COX-2 and β-amyloid aggregation inhibitors. Arch Pharm 348:179–187. https://doi.org/10.1002/ardp.201400400

Article  CAS  Google Scholar 

Comments (0)

No login
gif