New oxepin and dihydrobenzofuran derivatives from roots and their anti-inflammatory, cytotoxic, and antioxidant activities

Pacher P, Beckman JS, Liaudet L (2007) Nitric Oxide and Peroxynitrite in Health and Disease. Physiol Rev 87:315–424. https://doi.org/10.1152/physrev.00029.2006

Article  CAS  PubMed  Google Scholar 

Lee GB, Kim Y, Lee KE et al (2024) Anti-inflammatory effects of quercetin, rutin, and troxerutin result from the inhibition of NO production and the reduction of COX-2 levels in RAW 264.7 cells treated with LPS. Appl Biochem Biotechnol 196:8431–8452. https://doi.org/10.1007/s12010-024-05003-4

Article  CAS  PubMed  Google Scholar 

Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042. https://doi.org/10.1021/np9904509

Article  CAS  PubMed  Google Scholar 

Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutr 81:215S-217S. https://doi.org/10.1093/ajcn/81.1.215S

Article  CAS  PubMed  Google Scholar 

Lohsiriwat V, Chaisomboon N, Pattana-Arun J (2020) Current colorectal cancer in Thailand. Ann Coloproctol 36:78–82. https://doi.org/10.3393/ac.2020.01.07

Article  PubMed  PubMed Central  Google Scholar 

van den Boogaard WMC, Komninos DSJ, Vermeij WP (2022) Chemotherapy side-effects: not all DNA damage is equal. Cancers (Basel) 14:627. https://doi.org/10.3390/cancers14030627

Article  CAS  PubMed  Google Scholar 

Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

Article  CAS  PubMed  Google Scholar 

Gudavalli D, Pandey K, Ede VG et al (2024) Phytochemistry and pharmacological activities of five species of Bauhinia genus: a review. Fitoterapia 174:105830. https://doi.org/10.1016/j.fitote.2024.105830

Article  CAS  PubMed  Google Scholar 

Shreedhara C, Vaidya V, Vagdevi H et al (2009) Screening of Bauhinia purpurea Linn. for analgesic and anti-inflammatory activities. Indian J Pharmacol 41:75. https://doi.org/10.4103/0253-7613.51345

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filho VC (2009) Chemical composition and biological potential of plants from the genus Bauhinia. Phytother Res 23:1347–1354. https://doi.org/10.1002/ptr.2756

Article  CAS  Google Scholar 

Kittakoop P, Nopichai S, Thongon N et al (2004) Bauhinoxepins A and B: new Antimycobacterial Dibenzo[b, f ]oxepins from Bauhinia saccocalyx. Helv Chim Acta 87:175–179. https://doi.org/10.1002/hlca.200490006

Article  CAS  Google Scholar 

Saisor N, Prathepha P, Saensouk S (2021) Ethnobotanical study and utilization of plants in Khok Nhong Phok forest, Kosum Phisai District, Northeastern Thailand. Biodiversitas. https://doi.org/10.13057/biodiv/d221026

Article  Google Scholar 

Apisantiyakom S, Kittakoop P, Manyum T et al (2004) Novel biologically active Bibenzyls from Bauhinia saccocalyx Pierre. Chem Biodivers 1:1694–1701. https://doi.org/10.1002/cbdv.200490127

Article  CAS  PubMed  Google Scholar 

Schevenels FT, Jadsadajerm S, Lekphrom R et al (2024) (2024) Siamfuranones A–C, three novel furanone derivatives from the flowers of Uvaria siamensis and their biological activities. Nat Prod Res 10(1080/14786419):2324370

Google Scholar 

Wisetsai A, Lekphrom R, Suebrasri T et al (2023) Acrotrione B, a prenylated and highly oxidized Xanthenoid with antibacterial and anti-proliferative activities from the roots of Acronychia pedunculata. Planta Med 89:416–422. https://doi.org/10.1055/a-1953-0479

Article  CAS  PubMed  Google Scholar 

Wongwad E, Jadsadajerm S, Mungmai L, Wisetsai A (2024) Antioxidant, cytotoxic, anti-glycation, and anti-tyrosinase compounds from the leaves of Uvaria Siamensis. Chem Biodivers. https://doi.org/10.1002/cbdv.202400319

Article  PubMed  Google Scholar 

Boonphong S, Puangsombat P, Baramee A et al (2007) Bioactive compounds from Bauhinia purpurea possessing antimalarial, Antimycobacterial, antifungal, anti-inflammatory, and cytotoxic activities. J Nat Prod 70:795–801. https://doi.org/10.1021/np070010e

Article  CAS  PubMed  Google Scholar 

Kumari S, Badana AK, MM G et al (2018) Reactive oxygen species: a key constituent in cancer survival. Biomark Insights. https://doi.org/10.1177/1177271918755391

Article  PubMed  PubMed Central  Google Scholar 

Liu A, Fang H, Wei W et al (2014) G-CSF pretreatment aggravates LPS-associated microcirculatory dysfunction and acute liver injury after partial hepatectomy in rats. Histochem Cell Biol 142:667–676. https://doi.org/10.1007/s00418-014-1242-x

Article  CAS  PubMed  Google Scholar 

Cano A, Maestre AB, Hernández-Ruiz J, Arnao MB (2023) ABTS/TAC methodology: main milestones and recent applications. Processes 11:185. https://doi.org/10.3390/pr11010185

Article  CAS  Google Scholar 

Wink DA, Hines HB, Cheng RYS et al (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89:873–891. https://doi.org/10.1189/jlb.1010550

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Gao Z-F, Hou G-G et al (2023) Discovery of anti-neuroinflammatory agents from 1,4,5,6-tetrahydrobenzo[2,3]oxepino[4,5-d]pyrimidin-2-amine derivatives by regulating microglia polarization. Eur J Med Chem 259:115688. https://doi.org/10.1016/j.ejmech.2023.115688

Article  CAS  PubMed  Google Scholar 

Chen L, Zhao L, Han J et al (2024) Biosynthesis of Chryseno[2,1, c]oxepin-12-Carboxylic acid from glycyrrhizic acid in Aspergillus terreus TMZ05-2, and analysis of its anti-inflammatory activity. J Microbiol 62:113–124. https://doi.org/10.1007/s12275-024-00105-4

Article  CAS  PubMed  Google Scholar 

Dorn A, Schattel V, Laufer S (2010) Design, synthesis and SAR of phenylamino-substituted 5,11-dihydro-dibenzo[a, d]cyclohepten-10-ones and 11H-dibenzo[b, f]oxepin-10-ones as p38 MAP kinase inhibitors. Bioorg Med Chem Lett 20:3074–3077. https://doi.org/10.1016/j.bmcl.2010.03.107

Article  CAS  PubMed  Google Scholar 

Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford

Google Scholar 

Comments (0)

No login
gif