Poly(I:C) signaling induces robust CXCL10 production and apoptosis in human esophageal squamous cell carcinoma cells

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer K Clin. 2021;71:209–49.

Article  Google Scholar 

Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.

Article  PubMed  Google Scholar 

Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64:381–7.

Article  PubMed  Google Scholar 

McCormack VA, Menya D, Munishi MO, et al. Informing etiologic research priorities for squamous cell esophageal cancer in Africa: a review of setting-specific exposures to known and putative risk factors. Int J Cancer. 2017;140:259–71.

Article  CAS  PubMed  Google Scholar 

Ahrens W, Pohlabeln H, Foraita R, et al. Oral health, dental care and mouthwash associated with upper aerodigestive tract cancer risk in Europe: the ARCAGE study. Oral Oncol. 2014;50(6):616–25.

Article  PubMed  Google Scholar 

Baba Y, Iwatsuki M, Yoshida N, et al. Review of the gut microbiome and esophageal cancer: pathogenesis and potential clinical implications. Ann Gastroenterol Surg. 2017;1(2):99–104.

Article  PubMed  PubMed Central  Google Scholar 

Hannelien V, Karel G, Jo VD, et al. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta. 2012;1825(1):117–29.

Google Scholar 

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

Article  CAS  PubMed  Google Scholar 

Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008;1143:1–20.

Article  CAS  PubMed  Google Scholar 

Sato Y, Goto Y, Narita N, et al. Cancer cells expressing toll-like receptors and the tumor microenvironment. Cancer Microenviron. 2009;2(Suppl 1):205–14.

Article  PubMed  PubMed Central  Google Scholar 

Riva M, Källberg E, Björk P, et al. Induction of nuclear factor-κB responses by the S100A9 protein is Toll-like receptor-4-dependent. Immunology. 2012;137(2):172–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wheeler DS, Chase MA, Senft AP, et al. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res. 2009;30(10):31.

Article  Google Scholar 

Sims GP, Rowe DC, Rietdijk ST, et al. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88.

Article  CAS  PubMed  Google Scholar 

Ridnour LA, Cheng RY, Switzer CH, et al. Molecular pathways: toll-like receptors in the tumor microenvironment–poor prognosis or new therapeutic opportunity. Clin Cancer Res. 2013;19(6):1340–6.

Article  CAS  PubMed  Google Scholar 

Matsumoto M, Funami K, Tanabe M, et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol. 2003;171(6):3154–62.

Article  CAS  PubMed  Google Scholar 

Sato Y, Motoyama S, Wakita A, et al. TLR3 expression status predicts prognosis in patients with advanced thoracic esophageal squamous cell carcinoma after esophagectomy. Am J Surg. 2018;216(2):319–25.

Article  PubMed  Google Scholar 

Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med. 2010;207(6):1273–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsumoto M, Tatematsu M, Nishikawa F, Azuma M, Ishii N, Morii-Sakai A, Shime H, Seya T. Defined TLR3-specific adjuvant that induces NK and CTL activation without significant cytokine production in vivo. Nat Commun. 2015;18(6):6280. https://doi.org/10.1038/ncomms7280. (PMID: 25692975).

Article  CAS  Google Scholar 

Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology. 2020;9(1):1771143.

Article  PubMed  PubMed Central  Google Scholar 

Pradere JP, Dapito DH, Schwabe RF. The Yin and Yang of Toll-like receptors in cancer. Oncogene. 2014;33(27):3485–95.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Liu B, Ma Y, et al. Hantaan virus infection induces CXCL10 expression through TLR3, RIG-I, and MDA-5 pathways correlated with the disease severity. Mediators Inflamm. 2014;2014: 697837.

Article  PubMed  PubMed Central  Google Scholar 

Brownell J, Bruckner J, Wagoner J, et al. Direct, interferon-independent activation of the CXCL10 promoter by NF-κB and interferon regulatory factor 3 during hepatitis C virus infection. J Virol. 2014;88(3):1582–90.

Article  PubMed  PubMed Central  Google Scholar 

Errea A, González Maciel D, Hiriart Y, et al. Intranasal administration of TLR agonists induces a discriminated local innate response along murine respiratory tract. Immunol Lett. 2015;164:33–9.

Article  CAS  PubMed  Google Scholar 

Brownell J, Polyak SJ. Molecular pathways: hepatitis C virus, CXCL10, and the inflammatory road to liver cancer. Clin Cancer Res. 2013;19(6):1347–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M, Guo S, Stiles JK. The emerging role of CXCL10 in cancer. Oncol Lett. 2011;2(4):583–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu L, Pan K, Zheng HX, et al. IL-17A promotes immune cell recruitment in human esophageal cancers and the infiltrating dendritic cells represent a positive prognostic marker for patient survival. J Immunother. 2013;36(8):451–8.

Article  CAS  PubMed  Google Scholar 

Yoo JY, Choi HK, Choi KC, et al. Nuclear hormone receptor corepressor promotes esophageal cancer cell invasion by transcriptional repression of interferon-γ-inducible protein 10 in a casein kinase 2-dependent manner. Mol Biol Cell. 2012;23(15):2943–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato Y, Motoyama S, Nanjo H, et al. CXCL10 expression status is prognostic in patients with advanced thoracic esophageal squamous cell carcinoma. Ann Surg Oncol. 2016;23(3):936–42.

Article  PubMed  Google Scholar 

Masuda M, Nishihira T, Itoh K, et al. An immunohistochemical analysis for cancer of the esophagus using monoclonal antibodies specific for modified nucleosides. Cancer. 1993;72(12):3571–8.

Article  CAS  PubMed  Google Scholar 

Shimada Y, Imamura M, Wagata T, et al. Characterization of 21 newly established esophageal cancer cell lines. Cancer. 1992;69(2):277–84.

Article  CAS  PubMed  Google Scholar 

Rockett JC, Larkin K, Darnton SJ, et al. Five newly established oesophageal carcinoma cell lines: phenotypic and immunological characterization. Br J Cancer. 1997;75(2):258–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wakita A, Motoyama S, Sato Y, et al. REG Iα activates c-Jun through MAPK pathways to enhance the radiosensitivity of squamous esophageal cancer cells. Tumour Biol. 2015;36(7):5249–54.

Article  CAS 

Comments (0)

No login
gif