Generation and characterization of human-induced pluripotent stem cell lines from patients with autism spectrum disorder and variants

American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5-TR. 5th ed. Washington, DC, USA: American Psychiatric Association Publishing; 2023.

Google Scholar 

Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, et al. Global prevalence of autism: a systematic review update. Autism Res. 2022;15:778–90.

Article  PubMed  PubMed Central  Google Scholar 

Genovese A, Butler MG. The autism spectrum: behavioral, psychiatric and genetic associations. Genes (Basel). 2023;14:677.

Article  CAS  PubMed  Google Scholar 

Kruth KA, Grisolano TM, Ahern CA, Williams AJ. SCN2A channelopathies in the autism spectrum of neuropsychiatric disorders: a role for pluripotent stem cells? Mol Autism. 2020. https://doi.org/10.1186/s13229-020-00330-9.

Article  PubMed  PubMed Central  Google Scholar 

Imbrici P, Camerino DC, Tricarico D. Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front Genet. 2013. https://doi.org/10.3389/fgene.2013.00076.

Article  PubMed  PubMed Central  Google Scholar 

Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, et al. Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry. 2003;8:186–94.

Article  CAS  PubMed  Google Scholar 

Kamiya K, Kaneda M, Sugawara T, Mazaki E, Okamura N, Montal M, et al. A Nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline. J Neurosci. 2004;24:2690–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wood JN, Boorman J. Voltage-Gated Sodium Channel Blockers; Target Validation and Therapeutic Potential. Curr Top Med Chem. 2005;5:529.

Article  CAS  PubMed  Google Scholar 

Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Investig. 2005;115:2010–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidsson J, Collin A, Olsson ME, Lundgren J, Soller M. Deletion of the SCN gene cluster on 2q24.4 is associated with severe epilepsy: an array-based genotype-phenotype correlation and a comprehensive review of previously published cases. Epilepsy Res. 2008;81:69–79.

Article  CAS  PubMed  Google Scholar 

Holland KD, Kearney JA, Glauser TA, Buck G, Keddache M, Blankston JR, et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett. 2008;433:65–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartnik M, Chun-Hui Tsai A, Xia Z, Cheung S, Stankiewicz P. Disruption of the SCN2A and SCN3A genes in a patient with mental retardation, neurobehavioral and psychiatric abnormalities, and a history of infantile seizures. Clin Genet. 2011;80:191–5.

Article  CAS  PubMed  Google Scholar 

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

Article  CAS  PubMed  Google Scholar 

Ross PJ, Ellis J. Modeling complex neuropsychiatric disease with induced pluripotent stem cells. F1000 Biol Rep. 2010. https://doi.org/10.3410/B2-84.

Article  PubMed  PubMed Central  Google Scholar 

Temme SJ, Maher BJ, Christian KM. Using induced pluripotent stem cells to investigate complex genetic psychiatric disorders. Curr Behav Neurosci Rep. 2016;3:275–84.

Article  PubMed  PubMed Central  Google Scholar 

Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.

Article  CAS  PubMed  Google Scholar 

de Santos JLS, de Araújo CA, Rocha CAG, Costa-Ferro ZSM, de Souza BSF. Modeling autism spectrum disorders with induced pluripotent stem cell-derived brain organoids. Biomolecules. 2023;13:260.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Sampaio GLA, Martins GLS, Paredes BD, Nonaka CKV, da Silva KN, Rossi EA, et al. Generation of an induced pluripotent stem cell line from a patient with autism spectrum disorder and SCN2A haploinsufficiency. Stem Cell Res. 2019;39:101488.

Article  CAS  PubMed  Google Scholar 

Paredes BD, Martins GLS, Azevedo CM, de Sampaio GLA, Nonaka CKV, da Silva KN, et al. Generation of three control iPS cell lines for sickle cell disease studies by reprogramming erythroblasts from individuals without hemoglobinopathies. Stem Cell Res. 2019;38:101454.

Article  CAS  PubMed  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.

Article  CAS  PubMed  Google Scholar 

Thompson CH, Hawkins NA, Kearney JA, George AL. CaMKII modulates sodium current in neurons from epileptic Scn2a mutant mice. Proc Natl Acad Sci U S A. 2017;114:1696–701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganguly S, Thompson CH, George AL. Enhanced slow inactivation contributes to dysfunction of a recurrent SCN2A mutation associated with developmental and epileptic encephalopathy. J Physiol. 2021;599:4375–88.

Article  CAS  PubMed  Google Scholar 

Thompson CH, Potet F, Abramova TV, Dekeyser JM, Ghabra NF, Vanoye CG, et al. Epilepsy-associated SCN2A (NaV12) variants exhibit diverse and complex functional properties. J General Physiol. 2023. https://doi.org/10.1085/jgp.202313375.

Article  Google Scholar 

Yang Y, Wu J, Zhang J, Wettschurack K, Deming B, Cui N, et al. Microglial over-pruning of synapses during development in autism-associated SCN2A-decient mice and human cerebral organoids. Mole Psychiatry. 2023. https://doi.org/10.21203/rs.3.rs-3270664/v1.

Article  Google Scholar 

Junying Y, Kejin H, Kim SO, Shulan T, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 1979;2009(324):797–801.

Google Scholar 

Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12.

Article  CAS  PubMed  Google Scholar 

Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, et al. A comparison of non-integrating reprogramming methods. Nat Biotechnol. 2015;33:58–63.

Article  CAS  PubMed  Google Scholar 

Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mole Biol. 2013. p. 23–33.

Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 2010;7:521–31.

Article  CAS  PubMed  Google Scholar 

Sugiura M, Kasama Y, Araki R, Hoki Y, Sunayama M, Uda M, et al. Induced pluripotent stem cell generation-associated point mutations arise during the initial stages of the conversion of these cells. Stem Cell Reports. 2014;2:52–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaz IM, Borgonovo T, Kasai-Brunswick TH, Dos Santos DS, Mesquita FCP, Vasques JF, et al. Chromosomal aberrations after induced pluripotent stem cells reprogramming. Genet Mol Biol. 2021. https://doi.org/10.1590/1678-4685-gmb-2020-0147.

Article  PubMed  PubMed Central  Google Scholar 

Liu GH, Ding Z, Izpisua Belmonte JC. IPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol. 2012;24:765–74.

Article  CAS  PubMed 

Comments (0)

No login
gif