Schambach, A. et al. A new age of precision gene therapy. Lancet 403, 568–582 (2024).
Article CAS PubMed Google Scholar
Crooke, S. T., Baker, B. F., Crooke, R. M. & Liang, X. H. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453 (2021).
Article CAS PubMed Google Scholar
Wang, Z. et al. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol. Adv. 65, 108130 (2023).
Article CAS PubMed Google Scholar
Xu, L. et al. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. Exploration 4, 20230165 (2024).
Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).
Article CAS PubMed PubMed Central Google Scholar
Ramasamy, T. et al. Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics. J. Control Release 352, 861–878 (2022).
Article CAS PubMed Google Scholar
Stephenson, M. L. & Zamecnik, P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 75, 285–288, (1978).
Article CAS PubMed PubMed Central Google Scholar
Bennett, C. F. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu Rev. Med. 70, 307–321 (2019).
Article CAS PubMed Google Scholar
Whangbo, J. S. & Hunter, C. P. Environmental RNA interference. Trends Genet 24, 297–305 (2008).
Article CAS PubMed Google Scholar
Agrawal, N. et al. RNA interference: biology, mechanism, and applications. Microbiol Mol. Biol. Rev. 67, 657–685 (2003).
Article CAS PubMed PubMed Central Google Scholar
Downward, J. RNA interference. Bmj 328, 1245–1248 (2004).
Article CAS PubMed PubMed Central Google Scholar
Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
Article CAS PubMed Google Scholar
Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351 (2003).
Article CAS PubMed Google Scholar
Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).
Article CAS PubMed PubMed Central Google Scholar
Hoy, S. M. Patisiran: First Global Approval. Drugs 78, 1625–1631 (2018).
Article CAS PubMed Google Scholar
Scott, L. J. Givosiran: First Approval. Drugs 80, 335–339 (2020).
Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018).
Article CAS PubMed Google Scholar
Monia, B. P. et al. Evaluation of 2’-modified oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514–14522 (1993).
Article CAS PubMed Google Scholar
Vickers, T. A. & Crooke, S. T. The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA. Nucleic Acids Res. 43, 8955–8963, (2015).
Article CAS PubMed PubMed Central Google Scholar
Liang, X. H., Sun, H., Nichols, J. G. & Crooke, S. T. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Mol. Ther. 25, 2075–2092 (2017).
Article CAS PubMed PubMed Central Google Scholar
Vickers, T. A. et al. Fully modified 2’ MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res. 29, 1293–1299 (2001).
Article CAS PubMed PubMed Central Google Scholar
Boiziau, C. et al. Inhibition of translation initiation by antisense oligonucleotides via an RNase-H independent mechanism. Nucleic Acids Res. 19, 1113–1119 (1991).
Article CAS PubMed PubMed Central Google Scholar
Popp, M. W. & Maquat, L. E. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev. Genet. 47, 139–165 (2013).
Article CAS PubMed PubMed Central Google Scholar
Nomakuchi, T. T., Rigo, F., Aznarez, I. & Krainer, A. R. Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat. Biotechnol. 34, 164–166 (2016).
Article CAS PubMed Google Scholar
Bennett, C. F. & Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev. Pharm. Toxicol. 50, 259–293 (2010).
Dominski, Z. & Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 90, 8673–8677, (1993).
Article CAS PubMed PubMed Central Google Scholar
Shen, X. & Corey, D. R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 46, 1584–1600 (2018).
Article CAS PubMed Google Scholar
Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11, 125–140, (2012).
Article CAS PubMed PubMed Central Google Scholar
Ji, C. et al. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem. Rev. 123, 12471–12506 (2023).
Article CAS PubMed Google Scholar
Di Mauro, V. et al. Diagnostic and Therapeutic Aptamers: A Promising Pathway to Improved Cardiovascular Disease Management. JACC Basic Transl. Sci. 9, 260–277 (2024).
Lao, Y. H., Phua, K. K. & Leong, K. W. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano 9, 2235–2254, (2015).
Article CAS PubMed Google Scholar
Oelkrug, C. et al. Antibody- and aptamer-strategies for GvHD prevention. J. Cell Mol. Med. 19, 11–20 (2015).
Comments (0)