Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines

Schambach, A. et al. A new age of precision gene therapy. Lancet 403, 568–582 (2024).

Article  CAS  PubMed  Google Scholar 

Crooke, S. T., Baker, B. F., Crooke, R. M. & Liang, X. H. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, Z. et al. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol. Adv. 65, 108130 (2023).

Article  CAS  PubMed  Google Scholar 

Xu, L. et al. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. Exploration 4, 20230165 (2024).

Article  Google Scholar 

Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramasamy, T. et al. Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics. J. Control Release 352, 861–878 (2022).

Article  CAS  PubMed  Google Scholar 

Stephenson, M. L. & Zamecnik, P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 75, 285–288, (1978).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett, C. F. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu Rev. Med. 70, 307–321 (2019).

Article  CAS  PubMed  Google Scholar 

Whangbo, J. S. & Hunter, C. P. Environmental RNA interference. Trends Genet 24, 297–305 (2008).

Article  CAS  PubMed  Google Scholar 

Agrawal, N. et al. RNA interference: biology, mechanism, and applications. Microbiol Mol. Biol. Rev. 67, 657–685 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Downward, J. RNA interference. Bmj 328, 1245–1248 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

Article  CAS  PubMed  Google Scholar 

Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351 (2003).

Article  CAS  PubMed  Google Scholar 

Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoy, S. M. Patisiran: First Global Approval. Drugs 78, 1625–1631 (2018).

Article  CAS  PubMed  Google Scholar 

Scott, L. J. Givosiran: First Approval. Drugs 80, 335–339 (2020).

Article  PubMed  Google Scholar 

Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018).

Article  CAS  PubMed  Google Scholar 

Monia, B. P. et al. Evaluation of 2’-modified oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514–14522 (1993).

Article  CAS  PubMed  Google Scholar 

Vickers, T. A. & Crooke, S. T. The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA. Nucleic Acids Res. 43, 8955–8963, (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang, X. H., Sun, H., Nichols, J. G. & Crooke, S. T. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Mol. Ther. 25, 2075–2092 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vickers, T. A. et al. Fully modified 2’ MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res. 29, 1293–1299 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boiziau, C. et al. Inhibition of translation initiation by antisense oligonucleotides via an RNase-H independent mechanism. Nucleic Acids Res. 19, 1113–1119 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Popp, M. W. & Maquat, L. E. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev. Genet. 47, 139–165 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nomakuchi, T. T., Rigo, F., Aznarez, I. & Krainer, A. R. Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat. Biotechnol. 34, 164–166 (2016).

Article  CAS  PubMed  Google Scholar 

Bennett, C. F. & Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev. Pharm. Toxicol. 50, 259–293 (2010).

Article  CAS  Google Scholar 

Dominski, Z. & Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 90, 8673–8677, (1993).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, X. & Corey, D. R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 46, 1584–1600 (2018).

Article  CAS  PubMed  Google Scholar 

Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11, 125–140, (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji, C. et al. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem. Rev. 123, 12471–12506 (2023).

Article  CAS  PubMed  Google Scholar 

Di Mauro, V. et al. Diagnostic and Therapeutic Aptamers: A Promising Pathway to Improved Cardiovascular Disease Management. JACC Basic Transl. Sci. 9, 260–277 (2024).

Article  PubMed  Google Scholar 

Lao, Y. H., Phua, K. K. & Leong, K. W. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano 9, 2235–2254, (2015).

Article  CAS  PubMed  Google Scholar 

Oelkrug, C. et al. Antibody- and aptamer-strategies for GvHD prevention. J. Cell Mol. Med. 19, 11–20 (2015).

Comments (0)

No login
gif