Hartl, F. U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581 (2009).
Article CAS PubMed Google Scholar
Hartl, F. U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).
Article CAS PubMed Google Scholar
Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001).
Article CAS PubMed Google Scholar
Wu, J. et al. Heat shock proteins and cancer. Trends Pharm. Sci. 38, 226–256 (2017).
Article CAS PubMed Google Scholar
Lubkowska, A., Pluta, W., Strońska, A. & Lalko, A. Role of heat shock proteins (HSP70 and HSP90) in viral infection. Int. J. Mol. Sci. 22, 9366 (2021).
Ashburner, M. & Bonner, J. J. The induction of gene activity in drosophilia by heat shock. Cell 17, 241–254 (1979).
Article CAS PubMed Google Scholar
Kampinga, H. H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111 (2009).
Article CAS PubMed Google Scholar
Mirikar, D., Bushman, Y. & Truman, A. W. Structural transitions modulate the chaperone activities of Grp94. Trends Biochem. Sci. 49, 752–753 (2024).
Article CAS PubMed Google Scholar
Dharaskar, S. P., Paithankar, K. & Amere Subbarao, S. Analysis and functional relevance of the chaperone TRAP-1 interactome in the metabolic regulation and mitochondrial integrity of cancer cells. Sci. Rep. 13, 7584 (2023).
Article CAS PubMed PubMed Central Google Scholar
Lees-Miller, S. P. & Anderson, C. W. Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II. J. Biol. Chem. 264, 2431–2437 (1989).
Article CAS PubMed Google Scholar
Velasco-Carneros, L. et al. Pseudophosphorylation of single residues of the J domain of DNAJA2 regulates the holding/folding balance of the Hsc70 system. Protein Sci. 33, e5105 (2024).
Article CAS PubMed PubMed Central Google Scholar
Kandasamy, G. & Andréasson, C. Hsp70-Hsp110 chaperones deliver ubiquitin-dependent and -independent substrates to the 26S proteasome for proteolysis in yeast. J. Cell Sci. 131, jcs210948 (2018).
Havalová, H. et al. Mitochondrial HSP70 chaperone system—the influence of post-translational modifications and involvement in human diseases. Int. J. Mol. Sci. 22, 8077 (2021).
Piva, F., Cecati, M. & Giulietti, M. Gaining new insights on the Hsp90 regulatory network. Bioinformation 16, 17–20 (2020).
Article PubMed PubMed Central Google Scholar
Hu, C. et al. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 3, e161 (2022).
Article CAS PubMed PubMed Central Google Scholar
Singh, M. K. et al. Heat Shock response and heat shock proteins: current understanding and future opportunities in human diseases. Int. J. Mol. Sci. 25, 4209 (2024).
Tukaj, S. & Sitko, K. Heat shock protein 90 (Hsp90) and Hsp70 as potential therapeutic targets in autoimmune skin diseases. Biomolecules 12, 1153 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wei, H. et al. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm 5, e470 (2024).
Article CAS PubMed PubMed Central Google Scholar
Min, L. et al. Targeting HSP90 in gynecologic cancer: molecular mechanisms and therapeutic approaches. Cell Biochem. Biophys. https://doi.org/10.1007/s12013-024-01502-7 (2024).
Rong, B. & Yang, S. Molecular mechanism and targeted therapy of Hsp90 involved in lung cancer: new discoveries and developments (Review). Int. J. Oncol. 52, 321–336 (2018).
Qin, L. et al. Biological characteristics of heat shock protein 90 in human liver cancer cells. Am. J. Transl. Res 11, 2477–2483 (2019).
CAS PubMed PubMed Central Google Scholar
Wang, X. et al. The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy. Proc. Natl. Acad. Sci. USA 106, 21288–21293 (2009).
Article CAS PubMed PubMed Central Google Scholar
Sun, H. et al. The protein-protein interaction network and clinical significance of heat-shock proteins in esophageal squamous cell carcinoma. Amino Acids 50, 685–697 (2018).
Article CAS PubMed Google Scholar
Nakhjavani, M. et al. Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones 15, 959–964 (2010).
Article CAS PubMed PubMed Central Google Scholar
Waza, M. et al. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat. Med. 11, 1088–1095 (2005).
Article CAS PubMed Google Scholar
Wang, L., Xu, X., Jiang, Z. & You, Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm. Sin. B 10, 1904–1925 (2020).
Article CAS PubMed PubMed Central Google Scholar
Livak, K. J. et al. Sequence organization and transcription at two heat shock loci in Drosophila. Proc. Natl. Acad. Sci. USA 75, 5613–5617 (1978).
Article CAS PubMed PubMed Central Google Scholar
Schedl, P. et al. Two hybrid plasmids with D. melanogaster DNA sequences complementary to mRNA coding for the major heat shock protein. Cell 14, 921–929 (1978).
Article CAS PubMed Google Scholar
Ritossa, F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18, 571–573 (1962).
Sondermeijer, P. J. & Lubsen, N. H. Heat-shock peptides in Drosophila hydei and their synthesis in vitro. Eur. J. Biochem. 88, 331–339 (1978).
Article CAS PubMed Google Scholar
Moran, L. et al. Heat shock of Drosophila melanogaster induces the synthesis of new messenger RNAs and proteins. Philos. Trans. R. Soc. Lond. B Biol. Sci. 283, 391–406 (1978).
Article CAS PubMed Google Scholar
Qian, Y. Q., Patel, D., Hartl, F. U. & McColl, D. J. Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J domain. J. Mol. Biol. 260, 224–235 (1996).
Article CAS PubMed Google Scholar
O’Brien, M. C. & McKay, D. B. Threonine 204 of the chaperone protein Hsc70 influences the structure of the active site, but is not essential for ATP hydrolysis. J. Biol. Chem. 268, 24323–24329 (1993).
Soldano, K. L., Jivan, A., Nicchitta, C. V. & Gewirth, D. T. Structure of the N-terminal domain of GRP94. Basis for ligand specificity and regulation. J. Biol. Chem. 278, 48330–48338 (2003).
Article CAS PubMed Google Scholar
Lavery, L. A. et al. Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism. Mol. Cell 53, 330–343 (2014).
Comments (0)