The corticospinal tract in multiple sclerosis: correlation between cortical excitability and magnetic resonance imaging measures

Alexander AL, Hasan K, Kindlmann G et al (2000) A geometric analysis of diffusion tensor measurements of the human brain. Magn Reson Med 44:283–291

CAS  PubMed  Google Scholar 

Ayache SS, Chalah MA (2017) Cortical excitability changes: a mirror to the natural history of multiple sclerosis? Neurophysiol Clin 47:221–223

PubMed  Google Scholar 

Ayache SS, Créange A, Farhat WH et al (2014) Relapses in multiple sclerosis: effects of high-dose steroids on cortical excitability. Eur J Neurol 21:630–636

CAS  PubMed  Google Scholar 

Ayache SS, Créange A, Farhat WH et al (2015) Cortical excitability changes over time in progressive multiple sclerosis. Funct Neurol 30:257–263

PubMed  Google Scholar 

Basser PJ, Pierpaoli C (1997) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. J Magn Reson San Diego Calif 213:560–70

Bergsland N, Laganà MM, Tavazzi E et al (2015) Corticospinal tract integrity is related to primary motor cortex thinning in relapsing–remitting multiple sclesis. Mult Scler J 21:1771–1780

CAS  Google Scholar 

Caramia MD, Palmieri MG, Desiato MT et al (2004) Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation. Clin Neurophysiol 115:956–965

PubMed  Google Scholar 

Cercignani M, Gandini Wheeler-Kingshott C (2019) From micro- to macro-structures in multiple sclerosis: what is the added value of diffusion imaging. NMR Biomed 32:e3888

PubMed  Google Scholar 

Chalah MA, Palm U, Lefaucheur JP, Créange A, Ayache SS et al (2018) Interhermispheric inhibition predicts anxiety levels in multiple sclerosis: a corticospinal excitability study. Brain Res 1699:186–194

CAS  PubMed  Google Scholar 

Chalah MA, Kauv P, Créange A et al (2019) Neurophysiological, radiological and neuropsychological evaluation of fatigue in multiple sclerosis. Mult Scler Relat Disord 28:145–152

PubMed  Google Scholar 

Chalah MA, Lefaucheur JP, Créange A et al (2020) Corticospinal inhibition and alexithymia in multiple sclerosis patients-An exploratory study. Mult Scler Relat Disord 41:102039

PubMed  Google Scholar 

Chalah MA, Palm U, Ayache SS (2021) Editorial: Corticospinal excitability in patients with multiple sclerosis. Front Neurol 11:635612

PubMed  PubMed Central  Google Scholar 

Cowan JMA, Dick JPR, Day BL et al (1984) Abnormalities in central motor pathway conduction in multiple sclerosis. Lancet 324:304–307

Google Scholar 

Créange A, Lefaucheur J-P, Balleyguier M-O et al (2013) Iron depletion induced by bloodletting and followed by rhEPO administration as a therapeutic strategy in progressive multiple sclerosis: a pilot, open-label study with neurophysiological measurements. Neurophysiol Clin Neurophysiol 43:303–312

Google Scholar 

Cruz-Martínez A, González-Orodea JI, López Pajares R et al (2000) Disability in multiple sclerosis. The role of transcranial magnetic stimulation. Electromyogr Clin Neurophysiol 40:441–447

PubMed  Google Scholar 

Demirtas-Tatlidede A, Alonso-Alonso M, Shetty RP et al (2015) Long-term effects of contralesional rTMS in severe stroke: safety, cortical excitability, and relationship with transcallosal motor fibers. NeuroRehabilitation 36:51–59

PubMed  Google Scholar 

Du X, Kochunov P, Summerfelt A The role of white matter microstructure in inhibitory deficits in patients with schizophrenia. Brain Stimulat 10:283–290. Geurts JJG, Barkhof F et al (2017) (2008). Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841–51

Favaretto A, Poggiali D, Lazzarotto A et al (2015) The parallel analysis of Phase Sensitive Inversion Recovery (PSIR) and double inversion recovery (DIR) images significantly improves the Detection of Cortical Lesions in multiple sclerosis (MS) since clinical onset. PLoS ONE 10:e0127805

PubMed  PubMed Central  Google Scholar 

Geurts JJG, Pouwels PJW, Uitdehaag BMJ et al (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260

PubMed  Google Scholar 

Geurts JJG, Roosendaal SD, Calabrese M et al (2011) Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI. Neurology 76:418–424

CAS  PubMed  Google Scholar 

Gorgoraptis N, Wheeler-Kingshott CA, Jenkins TM et al (2010) Combining tractography and cortical measures to test system-specific hypotheses in multiple sclerosis. Mult Scler J 16:555–565

Google Scholar 

Hardmeier M, Schindler C, Kuhle J et al (2020) Validation of quantitative scores derived from motor evoked potentials in the Assessment of Primary Progressive multiple sclerosis: a longitudinal study. Front Neurol 11:735

PubMed  PubMed Central  Google Scholar 

Hubbard EA, Wetter NC, Sutton BP et al (2016) Diffusion tensor imaging of the corticospinal tract and walking performance in multiple sclerosis. J Neurol Sci 363:225–231

PubMed  Google Scholar 

Julkunen P, Määttä S, Säisänen L et al (2016) Functional and structural cortical characteristics after restricted focal motor cortical infarction evaluated at chronic stage – indications from a preliminary study. Clin Neurophysiol 127:2775–2784

PubMed  Google Scholar 

Kale N, Agaoglu J, Onder G et al (2009) Correlation between disability and transcranial magnetic stimulation abnormalities in patients with multiple sclerosis. J Clin Neurosci 16:1439–1442

CAS  PubMed  Google Scholar 

Kalkers NF, Strijers RLM, Jasperse MMS et al (2007) Motor evoked potential: a reliable and objective measure to document the functional consequences of multiple sclerosis? Relation to disability and MRI. Clin Neurophysiol 118:1332–1340

CAS  PubMed  Google Scholar 

Kern KC, Sarcona J, Montag M et al (2011) Corpus callosal diffusivity predicts motor impairment in relapsing-remitting multiple sclerosis: a TBSS and tractography study. NeuroImage 55:1169–1177

PubMed  Google Scholar 

Kidd D, Thompson PD, Day BL et al (1998) Central motor conduction time in progressive multiple sclerosis. Correlations with MRI and disease activity. Brain J Neurol 121:1109–1116

Google Scholar 

Kujirai T, Sato M, Rothwell JC et al (1993) The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol 89:227–234

CAS  PubMed  Google Scholar 

Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

CAS  PubMed  Google Scholar 

Kutzelnigg A, Lucchinetti CF, Stadelmann C et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain J Neurol 128:2705–2712

Google Scholar 

Landi D, Vollaro S, Pellegrino G et al (2015) Oral fingolimod reduces glutamate-mediated intracortical excitability in relapsing-remitting multiple sclerosis. Clin Neurophysiol off J Int Fed Clin Neurophysiol 126:165–169

CAS  Google Scholar 

Lefaucheur J-P (2012) Neurophysiology of cortical stimulation. Int Rev Neurobiol 107:57–85

PubMed  Google Scholar 

Lefaucheur J-P (2016) A comprehensive database of published tDCS clinical trials (2005–2016). Neurophysiol Clin Clin Neurophysiol 46:319–398

Google Scholar 

Lenzi D, Conte A, Mainero C et al (2007) Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum Brain Mapp 28:636–644

PubMed  Google Scholar 

Lin X, Tench CR, Morgan PS et al (2005) Importance sampling in MS: use of diffusion tensor tractography to quantify pathology related to specific impairment. J Neurol Sci 237:13–19

PubMed  Google Scholar 

Lin F, Yu C, Jiang T et al (2007) Diffusion tensor tractography-based group mapping of the pyramidal tract in relapsing-remitting multiple sclerosis patients. AJNR Am J Neuroradiol 28:278–282

CAS  PubMed  PubMed Central  Google Scholar 

Llufriu S, Blanco Y, Martinez-Heras E et al (2012) Influence of Corpus Callosum damage on Cognition and physical disability in multiple sclerosis: a Multimodal Study. PLoS ONE 7:e37167

CAS  PubMed  PubMed Central  Google Scholar 

Louapre C, Govindarajan ST, Giannì C et al (2016) Is the relationship between cortical and white Matter pathologic changes in multiple sclerosis spatially specific? A Multimodal 7-T and 3-T MR imaging study with Surface and Tract-based analysis. Radiology 278:524–535

PubMed  Google Scholar 

Lublin FD, Reingold SC, Cohen JA et al (2014) Defining the clinical course of multiple sclerosis the 2013 revisions. Neurology 83:278–286

PubMed  PubMed Central  Google Scholar 

Madsen MAJ, Wiggermann V, Marques MFM et al (2022) Linking lesions in sensorimotor cortex to contralateral hand function in multiple sclerosis: a 7 T MRI study. Brain 145:3522–3535

PubMed  PubMed Central  Google Scholar 

Mainero C, Inghilleri M, Pantano P et al (2004) Enhanced brain motor activity in patients with MS after a single dose of 3, 4-diaminopyridine. Neurology 62:2044–2050

CAS  PubMed  Google Scholar 

Mikell CB, Sinha S, Sheth SA (2016) Neurosurgery for schizophrenia: an update on pathophysiology and a novel therapeutic target. J Neurosurg 124:917–928

CAS  PubMed  Google Scholar 

Miller DH, Leary SM (2007) Primary-progressive multiple sclerosis. Lancet Neurol 6:903–912

PubMed  Google Scholar 

Mills KR, Murray NMF (1985) Corticospinal tract conduction time in multiple sclerosis. Ann Neurol 18:601–605

CAS  PubMed  Google Scholar 

Mori F, Kusayanagi H, Monteleone F et al (2013) Short interval intracortical facilitation correlates with the degree of disability in multiple sclerosis. Brain Stimulat 6:67–71

Comments (0)

No login
gif