Photophysical behavior of meso-N-butylcarbazole-substituted BODIPY in different nano-scale organized media

Loudet, A., & Burgess, K. (2007). BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical Reviews, 107, 4891–4932. https://doi.org/10.1021/cr078381n

Article  CAS  PubMed  Google Scholar 

Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chemical Society Reviews, 41, 1130–1172. https://doi.org/10.1039/c1cs15132k

Article  CAS  PubMed  Google Scholar 

Ulrich, G., Ziessel, R., & Harriman, A. (2008). The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angew Chemie - International Edition, 47, 1184–1201. https://doi.org/10.1002/anie.200702070

Article  CAS  Google Scholar 

Lager, E., Liu, J., Aguilar-Aguilar, A., et al. (2009). Novel meso-Polyarylamine-BODIPY hybrids: Synthesis and study of their optical properties. Journal of Organic Chemistry, 74, 2053–2058. https://doi.org/10.1021/jo802519b

Article  CAS  PubMed  Google Scholar 

Lee, J. M., Kang, S., Hwang, T. G., et al. (2021). A study on photophysical and photodynamic properties of donor–acceptor BODIPY complexes: Correlation between singlet oxygen quantum yield and singlet-triplet energy gap. Dyes and Pigments, 187, 109051. https://doi.org/10.1016/j.dyepig.2020.109051

Article  CAS  Google Scholar 

Zhao, Y., He, S., Yang, J., et al. (2018). Study on TICT emission of TPE-BODIPY derivatives mediated by methyl group on BODIPY. Optical Materials (Amst), 81, 102–108. https://doi.org/10.1016/j.optmat.2018.05.023

Article  CAS  Google Scholar 

Hu, R., Lager, E., Aguilar-Aguilar, A., et al. (2009). Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. Journal of Physical Chemistry C, 113, 15845–15853. https://doi.org/10.1021/jp902962h

Article  CAS  Google Scholar 

Gupta, I., & Kesavan, P. E. (2019). Carbazole substituted BODIPYs. Frontiers in Chemistry, 7, 1–31. https://doi.org/10.3389/fchem.2019.00841

Article  CAS  Google Scholar 

Pandey, V., Raza, M. K., Sonowal, M., & Gupta, I. (2021). BODIPY based red emitters: Synthesis, computational and biological studies. Bioorganic Chemistry, 106, 104467. https://doi.org/10.1016/j.bioorg.2020.104467

Article  CAS  PubMed  Google Scholar 

Kesavan, P. E., Das, S., Lone, M. Y., et al. (2015). Bridged bis-BODIPYs: Their synthesis, structures and properties. Dalton Transactions, 44, 17209–17221. https://doi.org/10.1039/c5dt01925g

Article  CAS  PubMed  Google Scholar 

Hong, Y., Lam, J. W. Y., & Tang, B. Z. (2011). Aggregation-induced emission. Chemical Society Reviews, 40, 5361–5388. https://doi.org/10.1039/c1cs15113d

Article  CAS  PubMed  Google Scholar 

Zhu, C., Kwok, R. T. K., Lam, J. W. Y., & Tang, B. Z. (2018). Aggregation-induced emission: A trailblazing journey to the field of biomedicine. ACS Applied Bio Materials, 1, 1768–1786. https://doi.org/10.1021/acsabm.8b00600

Article  CAS  PubMed  Google Scholar 

Hong, Y., Lam, J. W. Y., & Tang, B. Z. (2009). Aggregation-induced emission: Phenomenon, mechanism and applications. Chemical Communications. https://doi.org/10.1039/b904665h

Article  PubMed  Google Scholar 

Luo, J., Xie, Z., Xie, Z., et al. (2001). Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 18, 1740–1741. https://doi.org/10.1039/b105159h

Article  Google Scholar 

Mei, J., Leung, N. L. C., Kwok, R. T. K., et al. (2015). Aggregation-induced emission: Together we shine, united we soar! Chemical Reviews, 115, 11718–11940. https://doi.org/10.1021/acs.chemrev.5b00263

Article  CAS  PubMed  Google Scholar 

Kumar, B., Bhatta, A., Saraf, P., et al. (2024). BODIPY(aryl)iodonium salts in the efficient synthesis of diversely functionalized BODIPYs and selective detection of serum albumin. Organic & Biomolecular Chemistry, 22, 3405–3414. https://doi.org/10.1039/d4ob00336e

Article  CAS  Google Scholar 

Liu, M., Wang, C., & Qian, Y. (2021). Novel indole-BODIPY photosensitizers based on iodine promoted intersystem crossing enhancement for lysosome-targeted imaging and photodynamic therapy. New Journal of Chemistry, 45, 18082–18089. https://doi.org/10.1039/d1nj03628a

Article  CAS  Google Scholar 

Kuimova, M. K., Yahioglu, G., Levitt, J. A., & Suhling, K. (2008). Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. Journal of the American Chemical Society, 130, 6672–6673. https://doi.org/10.1021/ja800570d

Article  CAS  PubMed  Google Scholar 

Cui, J., Nie, H., Zang, S., et al. (2021). A conformational transition based fluorescent probe for mapping lysosomal viscosity fluctuations by fluorescence lifetime imaging. Sensors Actuators, B Chemical. https://doi.org/10.1016/j.snb.2020.129432

Article  PubMed  Google Scholar 

Zhu, H., Fan, J., Li, M., et al. (2014). A “distorted-BODIPY”-based fluorescent probe for imaging of cellular viscosity in live cells. Chemistry A European Journal, 20, 4691–4696. https://doi.org/10.1002/chem.201304296

Article  CAS  PubMed  Google Scholar 

Shi, W. J., Yang, J., Wei, Y. F., et al. (2022). Novel cationic: Meso -CF3BODIPY-based AIE fluorescent rotors for imaging viscosity in mitochondria. Chemical Communications, 58, 1930–1933. https://doi.org/10.1039/d1cc06532g

Article  CAS  PubMed  Google Scholar 

Tiwari, O. S., Rawat, V., Rencus-Lazar, S., & Gazit, E. (2025). Phenylalanine-embedded carbazole-based fluorescent ‘turn-off’ chemosensor for the detection of metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 326, 125277. https://doi.org/10.1016/j.saa.2024.125277

Article  CAS  PubMed  Google Scholar 

Ghosh, S., Dege, N., Kumar, A., et al. (2024). Naphthalimide-linked carbazole derivative: Synthesis, gelation and naked eye detection of Cu2+ and Fe3+-ions under different conditions. Inorganica Chimica Acta, 572, 122280. https://doi.org/10.1016/j.ica.2024.122280

Article  CAS  Google Scholar 

Suganthi, G., Ajitha, R., Anish Babu, A., et al. (2024). Highly efficient fluorescence sensing of Al3+ ions using a sensitive carbazole based Schiff base. Inorganic Chemistry Communications, 161, 112150. https://doi.org/10.1016/j.inoche.2024.112150

Article  CAS  Google Scholar 

Findik, M., Kuzu, B., Pehlivanoglu, S., et al. (2023). Synthesis of carbazole-substituted thiosemicarbazone and its Cu(II) complex, DNA/protein binding, cytotoxic, antiproliferative activities and molecular docking studies. Inorganic Chemistry Communications, 152, 110711. https://doi.org/10.1016/j.inoche.2023.110711

Article  CAS  Google Scholar 

Alam, S., Lu, L., Tao, X., & Mao, Y. (2024). A highly selective and sensitive carbazole-based fluorescent probe for peroxynitrite detection and cellular imaging. Chinese Journal of Analytical Chemistry. https://doi.org/10.1016/j.cjac.2024.100456

Article  Google Scholar 

Sengul, I. F., Okutan, E., Kandemir, H., et al. (2015). Carbazole substituted BODIPY dyes: Synthesis, photophysical properties and antitumor activity. Dyes and Pigments, 123, 32–38. https://doi.org/10.1016/j.dyepig.2015.07.025

Article  CAS  Google Scholar 

Zhao, C., Li, X., Yang, Y., et al. (2014). Construction of BODIPY-CTAB assembles for ratiometric fluorescence pH measurements in complete water system. Dyes and Pigments, 101, 130–135.

Article  CAS  Google Scholar 

Ksenofontov, A. A., Bocharov, P. S., Ksenofontova, K. V., & Antina, E. V. (2022). Water-Soluble BODIPY-Based fluorescent probe for BSA and HSA detection. Journal of Molecular Liquids, 345, 117031. https://doi.org/10.1016/j.molliq.2021.117031

Article  CAS  Google Scholar 

Bacalum, M., Wang, L., Boodts, S., et al. (2016). A blue-light-emitting BODIPY probe for lipid membranes. Langmuir, 32, 3495–3505. https://doi.org/10.1021/acs.langmuir.6b00478

Article  CAS  PubMed  Google Scholar 

Govender, T., Ramanna, L., Rawat, I., & Bux, F. (2012). BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresource Technology, 114, 507–511. https://doi.org/10.1016/j.biortech.2012.03.024

Article  CAS 

Comments (0)

No login
gif