Loudet, A., & Burgess, K. (2007). BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical Reviews, 107, 4891–4932. https://doi.org/10.1021/cr078381n
Article CAS PubMed Google Scholar
Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chemical Society Reviews, 41, 1130–1172. https://doi.org/10.1039/c1cs15132k
Article CAS PubMed Google Scholar
Ulrich, G., Ziessel, R., & Harriman, A. (2008). The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angew Chemie - International Edition, 47, 1184–1201. https://doi.org/10.1002/anie.200702070
Lager, E., Liu, J., Aguilar-Aguilar, A., et al. (2009). Novel meso-Polyarylamine-BODIPY hybrids: Synthesis and study of their optical properties. Journal of Organic Chemistry, 74, 2053–2058. https://doi.org/10.1021/jo802519b
Article CAS PubMed Google Scholar
Lee, J. M., Kang, S., Hwang, T. G., et al. (2021). A study on photophysical and photodynamic properties of donor–acceptor BODIPY complexes: Correlation between singlet oxygen quantum yield and singlet-triplet energy gap. Dyes and Pigments, 187, 109051. https://doi.org/10.1016/j.dyepig.2020.109051
Zhao, Y., He, S., Yang, J., et al. (2018). Study on TICT emission of TPE-BODIPY derivatives mediated by methyl group on BODIPY. Optical Materials (Amst), 81, 102–108. https://doi.org/10.1016/j.optmat.2018.05.023
Hu, R., Lager, E., Aguilar-Aguilar, A., et al. (2009). Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. Journal of Physical Chemistry C, 113, 15845–15853. https://doi.org/10.1021/jp902962h
Gupta, I., & Kesavan, P. E. (2019). Carbazole substituted BODIPYs. Frontiers in Chemistry, 7, 1–31. https://doi.org/10.3389/fchem.2019.00841
Pandey, V., Raza, M. K., Sonowal, M., & Gupta, I. (2021). BODIPY based red emitters: Synthesis, computational and biological studies. Bioorganic Chemistry, 106, 104467. https://doi.org/10.1016/j.bioorg.2020.104467
Article CAS PubMed Google Scholar
Kesavan, P. E., Das, S., Lone, M. Y., et al. (2015). Bridged bis-BODIPYs: Their synthesis, structures and properties. Dalton Transactions, 44, 17209–17221. https://doi.org/10.1039/c5dt01925g
Article CAS PubMed Google Scholar
Hong, Y., Lam, J. W. Y., & Tang, B. Z. (2011). Aggregation-induced emission. Chemical Society Reviews, 40, 5361–5388. https://doi.org/10.1039/c1cs15113d
Article CAS PubMed Google Scholar
Zhu, C., Kwok, R. T. K., Lam, J. W. Y., & Tang, B. Z. (2018). Aggregation-induced emission: A trailblazing journey to the field of biomedicine. ACS Applied Bio Materials, 1, 1768–1786. https://doi.org/10.1021/acsabm.8b00600
Article CAS PubMed Google Scholar
Hong, Y., Lam, J. W. Y., & Tang, B. Z. (2009). Aggregation-induced emission: Phenomenon, mechanism and applications. Chemical Communications. https://doi.org/10.1039/b904665h
Luo, J., Xie, Z., Xie, Z., et al. (2001). Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 18, 1740–1741. https://doi.org/10.1039/b105159h
Mei, J., Leung, N. L. C., Kwok, R. T. K., et al. (2015). Aggregation-induced emission: Together we shine, united we soar! Chemical Reviews, 115, 11718–11940. https://doi.org/10.1021/acs.chemrev.5b00263
Article CAS PubMed Google Scholar
Kumar, B., Bhatta, A., Saraf, P., et al. (2024). BODIPY(aryl)iodonium salts in the efficient synthesis of diversely functionalized BODIPYs and selective detection of serum albumin. Organic & Biomolecular Chemistry, 22, 3405–3414. https://doi.org/10.1039/d4ob00336e
Liu, M., Wang, C., & Qian, Y. (2021). Novel indole-BODIPY photosensitizers based on iodine promoted intersystem crossing enhancement for lysosome-targeted imaging and photodynamic therapy. New Journal of Chemistry, 45, 18082–18089. https://doi.org/10.1039/d1nj03628a
Kuimova, M. K., Yahioglu, G., Levitt, J. A., & Suhling, K. (2008). Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. Journal of the American Chemical Society, 130, 6672–6673. https://doi.org/10.1021/ja800570d
Article CAS PubMed Google Scholar
Cui, J., Nie, H., Zang, S., et al. (2021). A conformational transition based fluorescent probe for mapping lysosomal viscosity fluctuations by fluorescence lifetime imaging. Sensors Actuators, B Chemical. https://doi.org/10.1016/j.snb.2020.129432
Zhu, H., Fan, J., Li, M., et al. (2014). A “distorted-BODIPY”-based fluorescent probe for imaging of cellular viscosity in live cells. Chemistry A European Journal, 20, 4691–4696. https://doi.org/10.1002/chem.201304296
Article CAS PubMed Google Scholar
Shi, W. J., Yang, J., Wei, Y. F., et al. (2022). Novel cationic: Meso -CF3BODIPY-based AIE fluorescent rotors for imaging viscosity in mitochondria. Chemical Communications, 58, 1930–1933. https://doi.org/10.1039/d1cc06532g
Article CAS PubMed Google Scholar
Tiwari, O. S., Rawat, V., Rencus-Lazar, S., & Gazit, E. (2025). Phenylalanine-embedded carbazole-based fluorescent ‘turn-off’ chemosensor for the detection of metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 326, 125277. https://doi.org/10.1016/j.saa.2024.125277
Article CAS PubMed Google Scholar
Ghosh, S., Dege, N., Kumar, A., et al. (2024). Naphthalimide-linked carbazole derivative: Synthesis, gelation and naked eye detection of Cu2+ and Fe3+-ions under different conditions. Inorganica Chimica Acta, 572, 122280. https://doi.org/10.1016/j.ica.2024.122280
Suganthi, G., Ajitha, R., Anish Babu, A., et al. (2024). Highly efficient fluorescence sensing of Al3+ ions using a sensitive carbazole based Schiff base. Inorganic Chemistry Communications, 161, 112150. https://doi.org/10.1016/j.inoche.2024.112150
Findik, M., Kuzu, B., Pehlivanoglu, S., et al. (2023). Synthesis of carbazole-substituted thiosemicarbazone and its Cu(II) complex, DNA/protein binding, cytotoxic, antiproliferative activities and molecular docking studies. Inorganic Chemistry Communications, 152, 110711. https://doi.org/10.1016/j.inoche.2023.110711
Alam, S., Lu, L., Tao, X., & Mao, Y. (2024). A highly selective and sensitive carbazole-based fluorescent probe for peroxynitrite detection and cellular imaging. Chinese Journal of Analytical Chemistry. https://doi.org/10.1016/j.cjac.2024.100456
Sengul, I. F., Okutan, E., Kandemir, H., et al. (2015). Carbazole substituted BODIPY dyes: Synthesis, photophysical properties and antitumor activity. Dyes and Pigments, 123, 32–38. https://doi.org/10.1016/j.dyepig.2015.07.025
Zhao, C., Li, X., Yang, Y., et al. (2014). Construction of BODIPY-CTAB assembles for ratiometric fluorescence pH measurements in complete water system. Dyes and Pigments, 101, 130–135.
Ksenofontov, A. A., Bocharov, P. S., Ksenofontova, K. V., & Antina, E. V. (2022). Water-Soluble BODIPY-Based fluorescent probe for BSA and HSA detection. Journal of Molecular Liquids, 345, 117031. https://doi.org/10.1016/j.molliq.2021.117031
Bacalum, M., Wang, L., Boodts, S., et al. (2016). A blue-light-emitting BODIPY probe for lipid membranes. Langmuir, 32, 3495–3505. https://doi.org/10.1021/acs.langmuir.6b00478
Article CAS PubMed Google Scholar
Govender, T., Ramanna, L., Rawat, I., & Bux, F. (2012). BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresource Technology, 114, 507–511. https://doi.org/10.1016/j.biortech.2012.03.024
Comments (0)