Solvatochromism and cis–trans isomerism in azobenzene-4-sulfonyl chloride

Hartley, G. S. (1937). The cis-form of azobenzene. Nature, 140, 281–281.

Article  CAS  Google Scholar 

Rau, H. (2002). Photoreactive organic thin films (pp. 3–47). Elsevier.

Book  Google Scholar 

Bandara, H. D., & Burdette, S. C. (2012). Photoisomerization in different classes of azobenzene. Chemical Society Reviews, 41, 1809–1825.

Article  CAS  PubMed  Google Scholar 

Rau, H., & Lueddecke, E. (1982). On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion. Journal of the American Chemical Society, 104, 1616–1620.

Article  CAS  Google Scholar 

Dürr, H., & Bouas-Laurent, H. (2003). Photochromism: Molecules and systems. 1st Edition. Elsevier, Amsterdam.

Google Scholar 

Turanskỳ, R., Konôpka, M., Doltsinis, N. L., Štich, I., & Marx, D. (2010). Switching of functionalized azobenzene suspended between gold tips by mechanochemical, photochemical, and opto-mechanical means. Physical Chemistry Chemical Physics, 12, 13922–13932.

Article  PubMed  Google Scholar 

Henzl, J., Mehlhorn, M., Gawronski, H., Rieder, K., & Morgenstern, K. (2006). Reversible cis – trans isomerization of a single azobenzene molecule. Angewandte Chemie International Edition, 45, 603–606.

Article  CAS  PubMed  Google Scholar 

Tong, X., Pelletier, M., Lasia, A., & Zhao, Y. (2008). Fast cis–trans isomerization of an azobenzene derivative in liquids and liquid crystals under a low electric field. Angewandte Chemie International Edition, 47, 3596–3599.

Article  CAS  PubMed  Google Scholar 

Lenci, F. (2004). CRC handbook of organic photochemistry and photobiology. CRC Press.

Google Scholar 

Al-Jebaly, A. M., Hemdan, S. S., & Ali, F. K. (2017). Solvatochromic effect studies on the absorption spectra of 4-[(E)-(3-formayl-4-hydroxyphenyl) diazneyl] benzene sulphonic acid and 2-hydroxy-5-[(E)-(2-nitrophenyl) diazneyl] benzaldehyde azo compounds. J Sci Hum Stu, 39, 1–15.

Google Scholar 

Han, M., & Honda, T. (2011). Correlation between the molecular structure and trans ↔ cis isomerization characteristics of azobenzenes. Science China: Chemistry, 54, 1955–1961.

Article  CAS  Google Scholar 

Ruslim, C., & Ichimura, K. (2000). Spectroscopic and thermal isomerization characteristics of 3, 3′-dialkoxy and dialkanoyloxy azobenzenes. Journal of Materials Chemistry, 10, 2704–2707.

Article  CAS  Google Scholar 

Bang, C., Shishido, A., & Ikeda, T. (2007). Azobenzene liquid-crystalline polymer for optical switching of grating waveguide couplers with a flat surface. Macromolecular Rapid Communications, 28, 1040–1044.

Article  CAS  Google Scholar 

Puntoriero, F., Ceroni, P., Balzani, V., Bergamini, G., & Vögtle, F. (2007). Photoswitchable dendritic hosts: A dendrimer with peripheral azobenzene groups. Journal of the American Chemical Society, 129, 10714–10719.

Article  CAS  PubMed  Google Scholar 

Parker, R. M., Gates, J. C., Rogers, H. L., Smith, P. G., & Grossel, M. C. (2010). Using the photoinduced reversible refractive-index change of an azobenzene co-polymer to reconfigure an optical Bragg grating. Journal of Materials Chemistry, 20, 9118–9125.

Article  CAS  Google Scholar 

Ferri, V., Elbing, M., Pace, G., Dickey, M. D., Zharnikov, M., Samorì, P., Mayor, M., & Rampi, M. A. (2008). Light-powered electrical switch based on cargo-lifting azobenzene monolayers. Angewandte Chemie-International Edition In English-, 47, 3407.

Article  CAS  Google Scholar 

Wen, Y., Yi, W., Meng, L., Feng, M., Jiang, G., Yuan, W., Zhang, Y., Gao, H., Jiang, L., & Song, Y. (2005). Photochemical-controlled switching based on azobenzene monolayer modified silicon (111) surface. The Journal of Physical Chemistry B, 109, 14465–14468.

Article  CAS  PubMed  Google Scholar 

Kakiage, K., Yamamura, M., Ido, E., Kyomen, T., Unno, M., & Hanaya, M. (2011). Reactivity of alkoxysilyl compounds: Chemical surface modification of nano-porous alumina membrane using alkoxysilylazobenzenes. Applied Organom Chemis, 25, 98–104.

Article  CAS  Google Scholar 

Banghart, M. R., Mourot, A., Fortin, D. L., Yao, J. Z., Kramer, R. H., & Trauner, D. (2009). Photochromic blockers of voltage-gated potassium channels. Angewandte Chemie International Edition, 48, 9097–9101.

Article  CAS  PubMed  Google Scholar 

Kim, Y., Phillips, J. A., Liu, H., Kang, H., & Tan, W. (2009). Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe. Proceedings of the National academy of Sciences of the United States of America, 106, 6489–6494.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, J., Liu, H.-B., & Ha, C.-S. (2009). Zinc-supported azobenzene derivative-based colorimetric fluorescent ‘turn-on’sensing of bovine serum albumin. Tetrahedron, 65, 9686–9689.

Article  CAS  Google Scholar 

Banghart, M., Borges, K., Isacoff, E., Trauner, D., & Kramer, R. H. (2004). Light-activated ion channels for remote control of neuronal firing. Nature Neuroscience, 7, 1381–1386.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norikane, Y., & Tamaoki, N. (2004). Light-driven molecular hinge: A new molecular machine showing a light-intensity-dependent photoresponse that utilizes the trans−cis isomerization of azobenzene. Organic Letters, 6, 2595–2598.

Article  CAS  PubMed  Google Scholar 

Murakami, H., Kawabuchi, A., Kotoo, K., Kunitake, M., & Nakashima, N. (1997). A light-driven molecular shuttle based on a rotaxane. Journal of the American Chemical Society, 119, 7605–7606.

Article  CAS  Google Scholar 

Muraoka, T., Kinbara, K., & Aida, T. (2006). Mechanical twisting of a guest by a photoresponsive host. Nature, 440, 512–515.

Article  CAS  PubMed  Google Scholar 

Itoh, M., Harada, K., Kamemaru, S., & Yatagai, T. (2004). Holographic recording on azo-benzene functionalized polymer film. Japanese Journal of Applied Physics, 43, 4968.

Article  CAS  Google Scholar 

Várhegyi, P., Kerekes, Á., Sajti, S., Ujhelyi, F., Koppa, P., Szarvas, G., & Lȍrincz, E. (2003). Saturation effect in azobenzene polymers used for polarization holography. Applied Physics B: Lasers and Optics, 76, 397–402.

Article  Google Scholar 

Jiang, X. L., Li, L., Kumar, J., Kim, D. Y., & Tripathy, S. K. (1998). Unusual polarization dependent optical erasure of surface relief gratings on azobenzene polymer films. Applied Physics Letters, 72, 2502–2504.

Article  CAS  Google Scholar 

Evangelio, E., Saiz-Poseu, J., Maspoch, D., Wurst, K., Busque, F., & Ruiz-Molina, D. (2008). Synthesis, X-ray Structure and reactivity of a sterically protected azobisphenol ligand: on the quest for new multifunctional active ligands. European Journal of Inorganic Chemistry, 2008, 2278–2285.

Article  Google Scholar 

Shinkai, S., Nakaji, T., Nishida, Y., Ogawa, T., & Manabe, O. (1980). Photoresponsive crown ethers. 1. Cis-trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers. Journal of the American Chemical Society., 102, 5860–5865.

Article  CAS  Google Scholar 

Luboch, E., Wagner-Wysiecka, E., & Rzymowski, T. (2009). 4-Hexylresorcinol-derived hydroxyazobenzocrown ethers as chromoionophores. Tetrahedron, 65, 10671–10678.

Article  CAS  Google Scholar 

Luboch, E., Wagner-Wysiecka, E., Poleska-Muchlado, Z., & Kravtsov, V. C. (2005). Synthesis and properties of azobenzocrown ethers with π-electron donor, or π-electron donor and π-electron acceptor group (s) on benzene ring (s). Tetrahedron, 61, 10738–10747.

Article  CAS  Google Scholar 

Gorostiza, P., & Isacoff, E. Y. (2008). Optical switches for remote and noninvasive control of cell signaling. Science, 322, 395–399.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ichimura, K., Oh, S.-K., & Nakagawa, M. (2000). Light-driven motion of liquids on a photoresponsive surface. Science, 288, 1624–1626.

Article  CAS  PubMed  Google Scholar 

Stoll, R. S., Peters, M. V., Kuhn, A., Heiles, S., Goddard, R., Bühl, M., Thiele, C. M., & Hecht, S. (2009). Photoswitchable catalysts: Correlating structure and conformational dynamics with reactivity by a combined experimental and computational approach. Journal of the American Chemical Society, 131, 357–367.

Article  CAS  PubMed 

Comments (0)

No login
gif