Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell. 2023;186:1708–28. https://doi.org/10.1016/j.cell.2023.01.040.
Article CAS PubMed Google Scholar
Harris MA, Savas P, Virassamy B, O’Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer. 2024;24:554–77. https://doi.org/10.1038/s41568-024-00714-6.
Article CAS PubMed Google Scholar
Otterlei Fjørtoft M, Huse K, Rye IH. The tumor immune microenvironment in breast cancer progression. Acta Oncol. 2024;63:359–67. https://doi.org/10.2340/1651-226X.2024.33008.
Gorenšek R, Kresnik M, Takač I, Rojko T, Sobočan M. Advances in tumour-infiltrating lymphocytes for triple-negative breast cancer management. Breast Cancer (Dove Med Press). 2023;15:773–83. https://doi.org/10.2147/BCTT.S399157.
Luo C, Wang P, He S, Zhu J, Shi Y, Wang J. Progress and prospect of immunotherapy for triple-negative breast cancer. Front Oncol. 2022;12: 919072. https://doi.org/10.3389/fonc.2022.919072.
Article CAS PubMed PubMed Central Google Scholar
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5. https://doi.org/10.1126/science.aar4060.
Article CAS PubMed PubMed Central Google Scholar
Emens LA, Molinero L, Loi S, Rugo HS, Schneeweiss A, Diéras V, Iwata H, Barrios CH, Nechaeva M, Nguyen-Duc A, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the IMpassion130 study. J Natl Cancer Inst. 2021;113:1005–16. https://doi.org/10.1093/jnci/djab004.
Article CAS PubMed PubMed Central Google Scholar
Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, Cescon DW, Iwata H, Campone M, Nanda R, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30:397–404. https://doi.org/10.1093/annonc/mdy517.
Article CAS PubMed Google Scholar
Sriramulu S, Thoidingjam S, Speers C, Nyati S. Present and future of immunotherapy for triple-negative breast cancer. Cancers (Basel). 2024;16:3250. https://doi.org/10.3390/cancers16193250.
Article CAS PubMed Google Scholar
de Miguel M, Calvo E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell. 2020;38:326–33. https://doi.org/10.1016/j.ccell.2020.07.004.
Article CAS PubMed Google Scholar
Chen ACY, Jaiswal S, Martinez D, Yerinde C, Ji K, Miranda V, Fung ME, Weiss SA, Zschummel M, Taguchi K, et al. The aged tumor microenvironment limits T cell control of cancer. Nat Immunol. 2024;25:1033–45. https://doi.org/10.1038/s41590-024-01828-7.
Article CAS PubMed PubMed Central Google Scholar
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, et al. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol. 2024. https://doi.org/10.1038/s41580-024-00738-8.
Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-Aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.
Article CAS PubMed Google Scholar
Wherry EJ. T Cell Exhaustion Nat Immunol. 2011;12:492–9. https://doi.org/10.1038/ni.2035.
Article CAS PubMed Google Scholar
Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity. 2012;37:1130–44. https://doi.org/10.1016/j.immuni.2012.08.021.
Article CAS PubMed PubMed Central Google Scholar
Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443:350–4. https://doi.org/10.1038/nature05115.
Article CAS PubMed Google Scholar
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–99. https://doi.org/10.1038/nri3862.
Article CAS PubMed PubMed Central Google Scholar
McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:457–95. https://doi.org/10.1146/annurev-immunol-041015-055318.
Article CAS PubMed Google Scholar
Zhang Z, Chen L, Chen H, Zhao J, Li K, Sun J, Zhou M. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy. EBioMedicine. 2022;83: 104207. https://doi.org/10.1016/j.ebiom.2022.104207.
Article CAS PubMed PubMed Central Google Scholar
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8+ T-cell exhaustion: impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer. 2024;1879: 189193. https://doi.org/10.1016/j.bbcan.2024.189193.
Article CAS PubMed Google Scholar
Gao G, Wang Z, Qu X, Zhang Z. Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: a systematic review and meta-analysis. BMC Cancer. 2020;20:179. https://doi.org/10.1186/s12885-020-6668-z.
Article CAS PubMed PubMed Central Google Scholar
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411. https://doi.org/10.1038/nbt.4096.
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 2018;564:268–72. https://doi.org/10.1038/s41586-018-0694-x.
Article CAS PubMed Google Scholar
Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566:496–502. https://doi.org/10.1038/s41586-019-0969-x.
Article CAS PubMed PubMed Central Google Scholar
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2:100141. https://doi.org/10.1016/j.xinn.2021.100141.
Article CAS PubMed Google Scholar
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics. 2013;14:7. https://doi.org/10.1186/1471-2105-14-7.
Article PubMed PubMed Central Google Scholar
Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, Zhou R, Qiu W, Huang N, Sun L, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12: 687975. https://doi.org/10.3389/fimmu.2021.687975.
Comments (0)