Development of a prognostic model based on four genes related to exhausted CD8+ T cell in triple-negative breast cancer patients: a comprehensive analysis integrating scRNA-seq and bulk RNA-seq

Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell. 2023;186:1708–28. https://doi.org/10.1016/j.cell.2023.01.040.

Article  CAS  PubMed  Google Scholar 

Harris MA, Savas P, Virassamy B, O’Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer. 2024;24:554–77. https://doi.org/10.1038/s41568-024-00714-6.

Article  CAS  PubMed  Google Scholar 

Otterlei Fjørtoft M, Huse K, Rye IH. The tumor immune microenvironment in breast cancer progression. Acta Oncol. 2024;63:359–67. https://doi.org/10.2340/1651-226X.2024.33008.

Article  PubMed  Google Scholar 

Gorenšek R, Kresnik M, Takač I, Rojko T, Sobočan M. Advances in tumour-infiltrating lymphocytes for triple-negative breast cancer management. Breast Cancer (Dove Med Press). 2023;15:773–83. https://doi.org/10.2147/BCTT.S399157.

Article  PubMed  Google Scholar 

Luo C, Wang P, He S, Zhu J, Shi Y, Wang J. Progress and prospect of immunotherapy for triple-negative breast cancer. Front Oncol. 2022;12: 919072. https://doi.org/10.3389/fonc.2022.919072.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5. https://doi.org/10.1126/science.aar4060.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emens LA, Molinero L, Loi S, Rugo HS, Schneeweiss A, Diéras V, Iwata H, Barrios CH, Nechaeva M, Nguyen-Duc A, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the IMpassion130 study. J Natl Cancer Inst. 2021;113:1005–16. https://doi.org/10.1093/jnci/djab004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, Cescon DW, Iwata H, Campone M, Nanda R, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30:397–404. https://doi.org/10.1093/annonc/mdy517.

Article  CAS  PubMed  Google Scholar 

Sriramulu S, Thoidingjam S, Speers C, Nyati S. Present and future of immunotherapy for triple-negative breast cancer. Cancers (Basel). 2024;16:3250. https://doi.org/10.3390/cancers16193250.

Article  CAS  PubMed  Google Scholar 

de Miguel M, Calvo E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell. 2020;38:326–33. https://doi.org/10.1016/j.ccell.2020.07.004.

Article  CAS  PubMed  Google Scholar 

Chen ACY, Jaiswal S, Martinez D, Yerinde C, Ji K, Miranda V, Fung ME, Weiss SA, Zschummel M, Taguchi K, et al. The aged tumor microenvironment limits T cell control of cancer. Nat Immunol. 2024;25:1033–45. https://doi.org/10.1038/s41590-024-01828-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, et al. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol. 2024. https://doi.org/10.1038/s41580-024-00738-8.

Article  PubMed  Google Scholar 

Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-Aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.

Article  CAS  PubMed  Google Scholar 

Wherry EJ. T Cell Exhaustion Nat Immunol. 2011;12:492–9. https://doi.org/10.1038/ni.2035.

Article  CAS  PubMed  Google Scholar 

Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity. 2012;37:1130–44. https://doi.org/10.1016/j.immuni.2012.08.021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443:350–4. https://doi.org/10.1038/nature05115.

Article  CAS  PubMed  Google Scholar 

Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–99. https://doi.org/10.1038/nri3862.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:457–95. https://doi.org/10.1146/annurev-immunol-041015-055318.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Chen L, Chen H, Zhao J, Li K, Sun J, Zhou M. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy. EBioMedicine. 2022;83: 104207. https://doi.org/10.1016/j.ebiom.2022.104207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8+ T-cell exhaustion: impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer. 2024;1879: 189193. https://doi.org/10.1016/j.bbcan.2024.189193.

Article  CAS  PubMed  Google Scholar 

Gao G, Wang Z, Qu X, Zhang Z. Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: a systematic review and meta-analysis. BMC Cancer. 2020;20:179. https://doi.org/10.1186/s12885-020-6668-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411. https://doi.org/10.1038/nbt.4096.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 2018;564:268–72. https://doi.org/10.1038/s41586-018-0694-x.

Article  CAS  PubMed  Google Scholar 

Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566:496–502. https://doi.org/10.1038/s41586-019-0969-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2:100141. https://doi.org/10.1016/j.xinn.2021.100141.

Article  CAS  PubMed  Google Scholar 

Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics. 2013;14:7. https://doi.org/10.1186/1471-2105-14-7.

Article  PubMed  PubMed Central  Google Scholar 

Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, Zhou R, Qiu W, Huang N, Sun L, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12: 687975. https://doi.org/10.3389/fimmu.2021.687975.

Comments (0)

No login
gif