Supramolecular Chiroptical Sensing by Achiral AIE-active Thiols

Rapid and sensitive chiroptical sensing is of great significance for practical applications. Here, a novel rapid supramolecular chiroptical sensing strategy was developed to eliminate possible background interferences and enhance the chiroptical signal by non-chiral AIE-active thiol click reaction with chiral substrates. These AIE-thiols irreversibly bind amino acids, polypeptides, amines and amino alcohols based on a click-like reaction, and their sensing products further self-assemble resulting in higher chiroptical signal output. In particular, the AIE thiol generated from octyloxy-functionalized α-cyanostilbene can form supramolecular helix π-π stacking in the aggregated state, which can greatly contribute to the chiroptical sensing of the target substrate. The self-assemblies obtained from different AIE thiol sensing reactions exhibit different CD and CPL behaviors due to their different self-assembly modes, which are caused by the subtle differences in the non-covalent C-H…π, [π···π] and hydrogen bonding interactions of the chiroptical sensing reaction product. Their high reactivity and robust self-assembly sensing mechanism eliminates the interference of chiral substrates and their impurities, improving sensor sensitivity and selectivity. This strategy provides a simple and promising means of detecting chiral molecules, especially those without UV optical activity.

You have access to this article

Please wait while we load your content... Something went wrong. Try again?

Comments (0)

No login
gif