Transient Receptor Potential (TRP) Channels in Cochlear Function: Looking Beyond Mechanotransduction

Cuajungco MP, Grimm C, Heller S (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 1772(8):1022–1027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zanini D, Göpfert MC (2014) TRPs in hearing. In: Nilius B, Flockerzi V (eds) Mammalian transient receptor potential (TRP) cation channels, vol II. Springer International Publishing, Cham, pp 899–916

Chapter  Google Scholar 

Corey DP, García-Añoveros J, Holt JR, Kwan KY, Lin S-Y, Vollrath MA, Amalfitano A et al (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432(7018):723–730

Article  CAS  PubMed  Google Scholar 

Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang D-S, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50(2):277–289

Article  CAS  PubMed  Google Scholar 

Stepanyan RS, Indzhykulian AA, Catalina Vélez-Ortega A, Boger ET, Steyger PS, Friedman Thomas B, Frolenkov Gregory I (2011) TRPA1-mediated accumulation of aminoglycosides in mouse cochlear outer hair cells. J Assoc Res Otolaryngol: JARO 12(6):729–740

PubMed  PubMed Central  Google Scholar 

Vélez-Ortega AC, Stepanyan R, Edelmann SE, Torres-Gallego S, Park C, Marinkova DA, Nowacki JS, Sinha GP, Frolenkov GI (2023) TRPA1 activation in non-sensory supporting cells contributes to regulation of cochlear sensitivity after acoustic trauma. Nat Commun 14(1):3871

PubMed  PubMed Central  Google Scholar 

Doerner JF, Gisselmann G, Hatt H, Wetzel CH (2007) Transient receptor potential channel A1 is directly gated by calcium ions*. J Biol Chem 282(18):13180–13189

Article  CAS  PubMed  Google Scholar 

Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372(6504):366–369

Article  CAS  PubMed  Google Scholar 

Maksaev G, Yuan P, Nichols CG (2023) Blockade of TRPV channels by intracellular spermine. J Gen Physiol 155(5). https://doi.org/10.1085/jgp.202213273

Kim J, Moon SH, Kim T, Ko J, Jeon YK, Shin Y-C, Jeon J-H, So I (2020) Analysis of interaction between intracellular spermine and transient receptor potential canonical 4 channel: multiple candidate sites of negatively charged amino acids for the inward rectification of transient receptor potential canonical 4. Korean J Physiol Pharmacol: Off J Korean Physiol Soc Korean Soc Pharmacol 24(1):101–110

Article  CAS  Google Scholar 

Nilius B, Prenen J, Voets T, Droogmans G (2004) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflug Arch: Eur J Physiol 448(1):70–75

Article  CAS  Google Scholar 

Zhelay T, Wieczerzak KB, Beesetty P, Alter GM, Matsushita M, Kozak JA (2018) Depletion of plasma membrane-associated phosphoinositides mimics inhibition of TRPM7 channels by cytosolic Mg2+, spermine, and pH. J Biol Chem 293(47):18151–18167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dadon D, Minke B (2010) Cellular functions of transient receptor potential channels. Int J Biochem Cell Biol 42(9):1430–1445

CAS  PubMed  PubMed Central  Google Scholar 

Yamashita D, Jiang H-Y, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Research 1019(1–2):201–209

Article  CAS  PubMed  Google Scholar 

Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N et al (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA 104(33):13519–13524

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muñoz DJ, Kendrick IS, Rassam M, Thorne PR (2001) Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia. Acta Oto-Laryngologica 121(1):10–15

Article  PubMed  Google Scholar 

Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41(6):849–857

Article  CAS  PubMed  Google Scholar 

Jordt S-E, Bautista DM, Chuang H-H, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427(6971):260–265

Article  CAS  PubMed  Google Scholar 

Gale JE, Piazza V, Ciubotaru CD, Mammano F (2004) A mechanism for sensing noise damage in the inner ear. Curr Biol: CB 14(6):526–529

Article  CAS  PubMed  Google Scholar 

Dallos P (2008) Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol 18(4):370–376

CAS  PubMed  PubMed Central  Google Scholar 

Hudspeth AJ (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59(4):530–545

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babola TA, Li S, Wang Z, Kersbergen CJ, Elgoyhen AB, Coate TM, Bergles DE (2021) Purinergic signaling controls spontaneous activity in the auditory system throughout early development. J Neurosci Off J Soc Neurosci 41(4):594–612

Article  CAS  Google Scholar 

Wang HC, Lin C-C, Cheung R, Zhang-Hooks y, Agarwal A, Ellis-Davies G, Rock J, Bergles DE (2015) Spontaneous activity of cochlear hair cells triggered by fluid secretion mechanism in adjacent support cells. Cell 163(6):1348–1359

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jagger DJ, Forge A (2006) Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. J Neurosci Off J Soc Neurosci 26(4):1260–1268

Article  CAS  Google Scholar 

Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450(7166):50–55

Article  CAS  PubMed  Google Scholar 

Babola TA, Kersbergen CJ, Wang HC, Bergles DE (2020) Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space. eLife 9 (January). https://doi.org/10.7554/eLife.52160

Anand U, Otto WR, Facer P, Zebda N, Selmer I, Gunthorpe MJ, Chessell IP, Sinisi M, Birch R, Anand P (2008) TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons. Neurosci Lett 438(2):221–227

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif