Cuajungco MP, Grimm C, Heller S (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 1772(8):1022–1027
Article CAS PubMed PubMed Central Google Scholar
Zanini D, Göpfert MC (2014) TRPs in hearing. In: Nilius B, Flockerzi V (eds) Mammalian transient receptor potential (TRP) cation channels, vol II. Springer International Publishing, Cham, pp 899–916
Corey DP, García-Añoveros J, Holt JR, Kwan KY, Lin S-Y, Vollrath MA, Amalfitano A et al (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432(7018):723–730
Article CAS PubMed Google Scholar
Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang D-S, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50(2):277–289
Article CAS PubMed Google Scholar
Stepanyan RS, Indzhykulian AA, Catalina Vélez-Ortega A, Boger ET, Steyger PS, Friedman Thomas B, Frolenkov Gregory I (2011) TRPA1-mediated accumulation of aminoglycosides in mouse cochlear outer hair cells. J Assoc Res Otolaryngol: JARO 12(6):729–740
PubMed PubMed Central Google Scholar
Vélez-Ortega AC, Stepanyan R, Edelmann SE, Torres-Gallego S, Park C, Marinkova DA, Nowacki JS, Sinha GP, Frolenkov GI (2023) TRPA1 activation in non-sensory supporting cells contributes to regulation of cochlear sensitivity after acoustic trauma. Nat Commun 14(1):3871
PubMed PubMed Central Google Scholar
Doerner JF, Gisselmann G, Hatt H, Wetzel CH (2007) Transient receptor potential channel A1 is directly gated by calcium ions*. J Biol Chem 282(18):13180–13189
Article CAS PubMed Google Scholar
Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372(6504):366–369
Article CAS PubMed Google Scholar
Maksaev G, Yuan P, Nichols CG (2023) Blockade of TRPV channels by intracellular spermine. J Gen Physiol 155(5). https://doi.org/10.1085/jgp.202213273
Kim J, Moon SH, Kim T, Ko J, Jeon YK, Shin Y-C, Jeon J-H, So I (2020) Analysis of interaction between intracellular spermine and transient receptor potential canonical 4 channel: multiple candidate sites of negatively charged amino acids for the inward rectification of transient receptor potential canonical 4. Korean J Physiol Pharmacol: Off J Korean Physiol Soc Korean Soc Pharmacol 24(1):101–110
Nilius B, Prenen J, Voets T, Droogmans G (2004) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflug Arch: Eur J Physiol 448(1):70–75
Zhelay T, Wieczerzak KB, Beesetty P, Alter GM, Matsushita M, Kozak JA (2018) Depletion of plasma membrane-associated phosphoinositides mimics inhibition of TRPM7 channels by cytosolic Mg2+, spermine, and pH. J Biol Chem 293(47):18151–18167
Article CAS PubMed PubMed Central Google Scholar
Dadon D, Minke B (2010) Cellular functions of transient receptor potential channels. Int J Biochem Cell Biol 42(9):1430–1445
CAS PubMed PubMed Central Google Scholar
Yamashita D, Jiang H-Y, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Research 1019(1–2):201–209
Article CAS PubMed Google Scholar
Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N et al (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA 104(33):13519–13524
Article CAS PubMed PubMed Central Google Scholar
Muñoz DJ, Kendrick IS, Rassam M, Thorne PR (2001) Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia. Acta Oto-Laryngologica 121(1):10–15
Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41(6):849–857
Article CAS PubMed Google Scholar
Jordt S-E, Bautista DM, Chuang H-H, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427(6971):260–265
Article CAS PubMed Google Scholar
Gale JE, Piazza V, Ciubotaru CD, Mammano F (2004) A mechanism for sensing noise damage in the inner ear. Curr Biol: CB 14(6):526–529
Article CAS PubMed Google Scholar
Dallos P (2008) Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol 18(4):370–376
CAS PubMed PubMed Central Google Scholar
Hudspeth AJ (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59(4):530–545
Article CAS PubMed PubMed Central Google Scholar
Babola TA, Li S, Wang Z, Kersbergen CJ, Elgoyhen AB, Coate TM, Bergles DE (2021) Purinergic signaling controls spontaneous activity in the auditory system throughout early development. J Neurosci Off J Soc Neurosci 41(4):594–612
Wang HC, Lin C-C, Cheung R, Zhang-Hooks y, Agarwal A, Ellis-Davies G, Rock J, Bergles DE (2015) Spontaneous activity of cochlear hair cells triggered by fluid secretion mechanism in adjacent support cells. Cell 163(6):1348–1359
Article CAS PubMed PubMed Central Google Scholar
Jagger DJ, Forge A (2006) Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. J Neurosci Off J Soc Neurosci 26(4):1260–1268
Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450(7166):50–55
Article CAS PubMed Google Scholar
Babola TA, Kersbergen CJ, Wang HC, Bergles DE (2020) Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space. eLife 9 (January). https://doi.org/10.7554/eLife.52160
Anand U, Otto WR, Facer P, Zebda N, Selmer I, Gunthorpe MJ, Chessell IP, Sinisi M, Birch R, Anand P (2008) TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons. Neurosci Lett 438(2):221–227
Comments (0)