The Origin Along the Cochlea of Otoacoustic Emissions Evoked by Mid-Frequency Tone Pips

Abdala C, Ortmann AJ, Shera CA (2018) Reflection- and distortion-source otoacoustic emissions: evidence for increased irregularity in the human cochlea during aging. Journal of the Association for Reseach in Otolaryngology 5:493–510

Article  Google Scholar 

Stiepan S, Shera CA, Abdala C (2023) Characterizing a joint reflection-distortion OAE profile in humans with endolymphatic hydrops. Ear Hear 44(6):1437–1450

PubMed  PubMed Central  Google Scholar 

Guinan JJ Jr et al (2021) Altered mapping of sound frequency to cochlear place in ears with endolymphatic hydrops provide insight into the pitch anomaly of diplacusis. Sci Rep 11(1):10380

Article  PubMed  PubMed Central  Google Scholar 

Lee C et al (2020) Early detection of endolymphatic hydrops using the auditory nerve overlapped waveform (ANOW). Neuroscience 425:251–266

Article  CAS  PubMed  Google Scholar 

Lefler SM et al (2021) Measurements from ears with endolymphatic hydrops and 2-Hydroxypropyl-beta-cyclodextrin provide evidence that loudness recruitment can have a cochlear origin. Front Surg 8:687490

Article  PubMed  PubMed Central  Google Scholar 

Valenzuela CV et al (2020) Is cochlear synapse loss an origin of low-frequency hearing loss associated with endolymphatic hydrops? Hear Res 398:108099

Article  PubMed  PubMed Central  Google Scholar 

Abdala C, Kalluri R (2017) Towards a joint reflection-distortion otoacoustic emission profile: results in normal and impaired ears. J Acoust Soc Am 142(2):812

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mertes IB, Marquess A (2023) A survey of U.S. audiologists’ usage of and attitudes toward otoacoustic emissions. Am J Audiol 32(2):417–431

Article  PubMed  Google Scholar 

Goodman SS, Fitzpatrick DF, Ellison JC, Jesteadt W, Keefe DH (2009) High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans. J Acoust Soc Am 125(2):1014–1032

Article  PubMed  PubMed Central  Google Scholar 

Lewis JD, Goodman SS (2014) The effect of stimulus bandwidth on the nonlinear-derived tone-burst-evoked otoacoustic emission. J Assoc Res Otolaryngol 15(6):915–31

Article  PubMed  PubMed Central  Google Scholar 

Francis NA, Guinan JJ Jr (2010) Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: Implications for cochlear filter bandwidths. Hear Res 267(1–2):36–45

Article  PubMed  PubMed Central  Google Scholar 

Charaziak KK, Siegel JH (2015) Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation. Jaro-Journal of the Association for Research in Otolaryngology 16(3):317–329

Article  PubMed Central  Google Scholar 

Charaziak KK, Siegel JH (2014) Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas. Jaro-Journal of the Association for Research in Otolaryngology 15(6):883–896

Article  PubMed Central  Google Scholar 

Christensen AT, Abdala C, Shera CA (2020) A cochlea with three parts? Evidence from otoacoustic emission phase in humans. J Acoust Soc Am 148(3):1585

Article  PubMed  PubMed Central  Google Scholar 

Recio-Spinoso A, Oghalai JS (2017) Mechanical tuning and amplification within the apex of the guinea pig cochlea. J Physiol 595(13):4549–4561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shera CA, Guinan JJ Jr, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11(3):343–365

Article  PubMed  PubMed Central  Google Scholar 

Temchin AN, Rich NC, Ruggero MA (2008) Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations. J Neurophysiol 100(5):2889–2898

Article  PubMed  PubMed Central  Google Scholar 

Goodman SS et al (2020) The spatial origins of cochlear amplification assessed by stimulus-frequency otoacoustic emissions. Biophys J 118(5):1183–1195

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalluri R, Shera CA (2007) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 121(4):2097–2110

Article  PubMed  Google Scholar 

Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105(2 Pt 1):782–798

Article  CAS  PubMed  Google Scholar 

Brass D, Kemp DT (1993) Suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 93(2):920–939

Article  CAS  PubMed  Google Scholar 

Siegel JH et al (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118(4):2434–2443

Article  PubMed  Google Scholar 

Keefe DH et al (2008) Two-tone suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 123(3):1479–1494

Article  PubMed  Google Scholar 

Lichtenhan JT (2012) Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave. J Assoc Res Otolaryngol 13(1):17–28

Article  PubMed  Google Scholar 

Guinan JJ (1990) Changes in stimulus frequency otoacoustic emissions produced by two-tone suppression and efferent stimulation in cats. In: Dallos P et al (eds) Mechanics and biophysics of hearing. Springer, New York, pp 170–177

Chapter  Google Scholar 

Salt AN et al (2013) Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig. J Acoust Soc Am 133(3):1561–1571

Article  PubMed  Google Scholar 

Lee C et al (2019) Cochlear compound action potentials from high-level tone bursts originate from wide cochlear regions that are offset toward the most sensitive cochlear region. J Neurophysiol 121(3):1018–1033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lichtenhan JT et al (2016) Drug delivery into the cochlear apex: improved control to sequentially affect finely spaced regions along the entire length of the cochlear spiral. J Neurosci Methods 273:201–209

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lichtenhan JT et al (2014) The auditory nerve overlapped waveform (ANOW) originates in the cochlear apex. J Assoc Res Otolaryngol 15(3):395–411

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lichtenhan JT et al (2017) Direct administration of 2-hydroxypropyl-beta-cyclodextrin into guinea pig cochleae: effects on physiological and histological measurements. PLoS ONE 12(4):e0175236

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsuji J, Liberman MC (1997) Intracellular labeling of auditory nerve fibers in guinea pig: central and peripheral projections. J Comp Neurol 381(2):188–202

Article  CAS  PubMed  Google Scholar 

Kakehata S, Santos-Sacchi J (1996) Effects of salicylate and lanthanides on outer hair cell motility and associated gating charge. J Neurosci 16(16):4881–4889

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif