Identification of novel germline mutations in FUT7 and EXT1 linked with hereditary multiple exostoses

Wicklund CL, Pauli RM, Johnston D, Hecht JT. Natural history study of hereditary multiple exostoses. Am J Med Genet. 1995;55:43–6.

Article  PubMed  Google Scholar 

Jurik AG. Multiple hereditary exostoses and enchondromatosis. Best Pr Res Clin Rheumatol. 2020;34:101505.

Article  Google Scholar 

Kitsoulis P, Galani V, Stefanaki K, Paraskevas G, Karatzias G, Agnantis NJ, et al. Osteochondromas: Review of the clinical, radiological and pathological features. Vivo. 2008;22:633–46.

Google Scholar 

Bukowska-Olech E, Trzebiatowska W, Czech W, Drzymała O, Frąk P, Klarowski F, et al. Hereditary Multiple Exostoses-A Review of the Molecular Background, Diagnostics, and Potential Therapeutic Strategies. Front Genet. 2021;12:759129.

Article  PubMed  PubMed Central  Google Scholar 

Jennes I, Pedrini E, Zuntini M, Mordenti M, Balkassmi S, Asteggiano CG, et al. Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb). Hum Mutat. 2009;30:1620–7.

Article  PubMed  Google Scholar 

Stieber JR, Dormans JP. Manifestations of hereditary multiple exostoses. J Am Acad Orthop Surg. 2005;13:110–20.

Article  PubMed  Google Scholar 

McCormick C, Leduc Y, Martindale D, Mattison K, Esford LE, Dyer AP, et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet. 1998;19:158–61.

Article  PubMed  Google Scholar 

Jochmann K, Bachvarova V, Vortkamp A. Heparan sulfate as a regulator of endochondral ossification and osteochondroma development. Matrix Biol. 2014;34:55–63.

Article  PubMed  Google Scholar 

Matsumoto K, Irie F, Mackem S, Yamaguchi Y. A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses. Proc Natl Acad Sci USA. 2010;107:10932–7.

Article  PubMed  PubMed Central  Google Scholar 

Maurizio Pacifici. The pathogenic roles of heparan sulfate deficiency in Hereditary Multiple Exostoses. Matrix Biol. 2018;71:28–39.

Wang Y, Zhong L, Xu Y, Ding L, Ji Y, Schutz S, et al. EXT1 and EXT2 Variants in 22 Chinese Families With Multiple Osteochondromas: Seven New Variants and Potentiation of Preimplantation Genetic Testing and Prenatal Diagnosis. Front Genet. 2020;11:607838.

Article  PubMed  PubMed Central  Google Scholar 

Ishimaru D, Gotoh M, Takayama S, Kosaki R, Matsumoto Y, Narimatsu H, et al. Large-scale mutational analysis in the EXT1 and EXT2 genes for Japanese patients with multiple osteochondromas. BMC Genet [Internet]. 2016;17:1–7. Available from: https://doi.org/10.1186/s12863-016-0359-4.

Jamsheer A, Socha M, Sowińska-Seidler A, Telega K, Trzeciak T, Latos-Bieleńska A. Mutational screening of EXT1 and EXT2 genes in Polish patients with hereditary multiple exostoses. J Appl Genet. 2014;55:183–8.

Article  PubMed  PubMed Central  Google Scholar 

Sharma M, Fu MP, Lu HY, Sharma AA, Modi BP, Michalski C, et al. Human complete NFAT1 deficiency causes a triad of joint contractures, osteochondromas, and B-cell malignancy. Blood. 2022;140:1858–74.

Article  PubMed  Google Scholar 

Ge X, Tsang K, He L, Garcia RA, Ermann J, Mizoguchi F, et al. NFAT restricts osteochondroma formation from entheseal progenitors. JCI insight. 2016;1:e86254.

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Lin X, Zhu M, Xun F, Li J, Yuan Z, et al. A mutation in SLC20A2 (c.C1849T) promotes proliferation while inhibiting hypertrophic differentiation in ATDC5 chondrocytes. Bone Jt Res. 2020;9:751–60.

Article  Google Scholar 

Tolchin D, Yeager JP, Prasad P, Dorrani N, Russi AS, Martinez-Agosto JA, et al. De Novo SOX6 Variants Cause a Neurodevelopmental Syndrome Associated with ADHD, Craniosynostosis, and Osteochondromas. Am J Hum Genet. 2020;106:830–45.

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Lin X, Zhu M, Li J, Yuan Z, Xu H. Whole-exome sequencing identifies a novel mutation of SLC20A2 (c.C1849T) as a possible cause of hereditary multiple exostoses in a Chinese family. Mol Med Rep. 2020;22:2469–77.

Article  PubMed  PubMed Central  Google Scholar 

Kang QL, Xu J, Zhang Z, He JW, Fu WZ, Zhang ZL. Mutation screening for the EXT1 and EXT2 Genes in Chinese patients with multiple osteochondromas. Arch Med Res. 2013;44:542–8. https://doi.org/10.1016/j.arcmed.2013.09.008.

Article  PubMed  Google Scholar 

Sarrión P, Sangorrin A, Urreizti R, Delgado A, Artuch R, Martorell L, et al. Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas. Sci Rep. 2013;3:1–7.

Article  Google Scholar 

Ajmal M, Muhammad H, Nasir M, Shoaib M, Malik SA, Ullah I. Haploinsufficiency of EXT1 and Heparan Sulphate Deficiency Associated with Hereditary Multiple Exostoses in a Pakistani Family. Medicina. 2023;59:100.

Caino S, Cubilla MA, Alba R, Obregón MG, Fano V, Gómez A, et al. Clinical and Genetic Analysis of Multiple Osteochondromas in A Cohort of Argentine Patients. Genes. 2022;13:1–14.

Article  Google Scholar 

Raskind WH, Conrad EU, Matsushita M, Wijsman EM, Wells DE, Chapman N, et al. Evaluations of locus heterogeneity and EXT1 mutations in 34 families with hereditary multiple exoxteses. Hum Mutat. 1998;11:231–9.

Article  PubMed  Google Scholar 

Philippe C, Porter DE, Emerton ME, Wells DE, Simpson AHRW. Mutation Screening of the EXT1 and EXT2 Genes in Patients with Hereditary Multiple Exostoses. Am J Hum Genet. 1997;61:520–8.

Article  PubMed  PubMed Central  Google Scholar 

Wuyts W, Van Hul W, De Boulle K, Hendrickx J, Bakker E, Vanhoenacker F, et al. Mutations in the EXT1 and EXT2 genes in hereditary multiple exostoses. Am J Hum Genet. 1998;62:346–54.

Article  PubMed  PubMed Central  Google Scholar 

Clément A, Wiweger M, Von Der Hardt S, Rusch MA, Selleck SB, Chien CB, et al. Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genet. 2008;4:e1000136.

Lin JC, Tsai JT, Chao TY, Ma HI, Liu WH. The STAT3/slug axis enhances radiation-induced tumor invasion and cancer stem-like properties in radioresistant glioblastoma. Cancers. 2018;10:1–17.

Article  Google Scholar 

Colley KJ, Varki A, Haltiwanger RS, Kinoshita T. Cellular Organization of Glycosylation. In: Varki A, Cummings RD, Esko jeffrey D, Stanley P, Hart GW, Aebi M, et al., editors. Essentials of Glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022.

Fokkema IFAC, Kroon M, López Hernández JA, Asscheman D, Lugtenburg I, Hoogenboom J, et al. The LOVD3 platform: efficient genome-wide sharing of genetic variants. Eur J Hum Genet. 2021;29:1796–803.

Article  PubMed  PubMed Central  Google Scholar 

Natsuka S, Gersten KM, Zenita K, Kannagi R, Lowe JB. Molecular cloning of a cDNA encoding a novel human leukocyte α-1,3- fucosyltransferase capable of synthesizing the sialyl Lewis x determinant. J Biol Chem. 1994;269:16789–94.

Article  PubMed  Google Scholar 

Bengtson P, Larson C, Lundblad A, Larson G, Påhlsson P. Identification of a missense mutation (G329A;Arg(110)-> GLN) in the human FUT7 gene. J Biol Chem. 2001;276:31575–82.

Article  PubMed  Google Scholar 

Liu M, Zheng Q, Chen S, Liu J, Li S. Fut7 promotes the epithelial–mesenchymal transition and immune infiltration in bladder urothelial carcinoma. J Inflamm Res. 2021;14:1069–84.

Article  PubMed  PubMed Central  Google Scholar 

Li D, Sun H, Bai G, Wang W, Liu M, Bao Z, et al. α-1,3-fucosyltransferase-VII siRNA inhibits the expression of slex and hepatocarcinoma cell proliferation. Int J Mol Med. 2018;42:2700–8.

PubMed  PubMed Central  Google Scholar 

Liang J, Gao W, Cai L. Fucosyltransferase VII promotes proliferation via the EGFR/AKT/mTOR pathway in A549 cells. Onco Targets Ther. 2017;10:3971–8.

Article  PubMed  PubMed Central  Google Scholar 

Qin H, Liu J, Yu M, Wang H, Thomas AM, Li S, et al. FUT7 promotes the malignant transformation of follicular thyroid carcinoma through α1,3-fucosylation of EGF receptor. Exp Cell Res. 2020;393:112095 https://doi.org/10.1016/j.yexcr.2020.112095.

Article  PubMed  Google Scholar 

Sarraj B, Ye J, Akl AI, Chen G, Wang J-J, Zhang Z, et al. Impaired selectin-dependent leukocyte recruitment induces T-cell exhaustion and prevents chronic allograft vasculopathy and rejection. Proc Natl Acad Sci USA. 2014;111:12145–50.

Article  PubMed  PubMed Central  Google Scholar 

Xu Y, Gao Z, Hu R, Wang Y, Wang Y, Su Z, et al. PD-L2 glycosylation promotes immune evasion and predicts anti-EGFR efficacy. J Immunother cancer. 2021;9:e002699.

Cao W, Zeng Z, Pan R, Wu H, Zhang X, Chen H, et al. Hypoxia-Related Gene FUT11 Promotes Pancreatic Cancer Progression by Maintaining the Stability of PDK1. Front Oncol. 2021;11:675991.

Article  PubMed  PubMed Central  Google Scholar 

Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B, Sproviero D, et al. Selectin ligand sialyl-lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res. 2011;71:7683–93.

Article 

Comments (0)

No login
gif