Larsson D, Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257–69.
Article PubMed CAS Google Scholar
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. lancet. 2022;399(10325):629–55.
Abushaheen MA, Fatani AJ, Alosaimi M, Mansy W, George M, Acharya S, et al. Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon. 2020;66(6):100971.
Gupta N, Rai DB, Jangid AK, Kulhari H. Use of nanotechnology in antimicrobial therapy. Methods in microbiology. Elsevier; 2019. pp. 143–72.
Thorley AJ, Tetley TD. New perspectives in nanomedicine. Pharmacol Ther. 2013;140(2):176–85.
Article PubMed CAS Google Scholar
Naz S, Islam M, Tabassum S, Fernandes NF, Carcache de Blanco EJ, Zia M. Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J Mol Struct. 2019;1185:1–7.
Saqib S, Zaman W, Ayaz A, Habib S, Bahadur S, Hussain S, Muhammad S, Ullah F. Postharvest disease inhibition in fruit by synthesis and characterization of chitosan iron oxide nanoparticles. Biocatal Agric Biotechnol. 2020;28:101729.
Saqib S, Munis MF, Zaman W, Ullah F, Shah SN, Ayaz A, Farooq M, Bahadur S. Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microsc Res Tech. 2019;82(4):415–20.
Article PubMed CAS Google Scholar
Ghasemi S, Harighi B, Ashengroph M. Biosynthesis of silver nanoparticles using Pseudomonas canadensis, and its antivirulence effects against Pseudomonas tolaasii, mushroom brown blotch agent. Sci Rep. 2023;13(1):3668.
Article PubMed PubMed Central CAS Google Scholar
Khan F, Jeong G-J, Singh P, Tabassum N, Mijakovic I, Kim Y-M. Retrospective analysis of the key molecules involved in the green synthesis of nanoparticles. Nanoscale. 2022;14(40):14824–57.
Article PubMed CAS Google Scholar
Nadeem M, Khan R, Shah N, Bangash IR, Abbasi BH, Hano C, et al. A review of microbial mediated iron nanoparticles (IONPs) and its biomedical applications. Nanomaterials. 2021;12(1):130.
Article PubMed PubMed Central Google Scholar
Brandelli A, Ritter AC, Veras FF. Antimicrobial activities of metal nanoparticles. Metal Nanopart Pharma. 2017:337–63.
Zouari Ahmed R, Laouini SE, Salmi C, Bouafia A, Meneceur S, Mohammed HA et al. Green synthesis of α-Fe2O3 and α-Fe2O3@ Ag NC for degradation of rose Bengal and antimicrobial activity. Biomass Convers Biorefinery. 2023:1–15.
Ashengroph M, Daj S. Green synthesis and characterization of silver sulfide nanoparticles using Bacillus safensis strain GMS10 isolated from contaminated soil of gold mine. Appl Biology. 2023;35(4):7–23.
Asadi S, Nayeri-Fasaei B, Zahraei-Salehi T, Yahya-Rayat R, Shams N, Sharifi A. Antibacterial and anti-biofilm properties of carvacrol alone and in combination with cefixime against Escherichia coli. BMC Microbiol. 2023;23(1):55.
Article PubMed PubMed Central CAS Google Scholar
Sharifi A, Mohammadzadeh A, Salehi TZ, Mahmoodi P, Nourian A. Cuminum cyminum L. essential oil: A promising antibacterial and antivirulence agent against multidrug-resistant Staphylococcus aureus. Front Microbiol. 2021;12:667833.
Article PubMed PubMed Central Google Scholar
Devi KP, Nisha SA, Sakthivel R, Pandian SK. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol. 2010;130(1):107–15.
Article PubMed CAS Google Scholar
Sharifi A, Mohammadzadeh A, Zahraei Salehi T, Mahmoodi P. Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates. J Appl Microbiol. 2018;124(2):379–88.
Article PubMed CAS Google Scholar
Sharifi A, Nayeri Fasaei B. Selected plant essential oils inhibit biofilm formation and luxS-and pfs‐mediated quorum sensing by Escherichia coli O157: H7. Lett Appl Microbiol. 2022;74(6):916–23.
Article PubMed CAS Google Scholar
Chauhan S, Upadhyay LSB. Biosynthesis of iron oxide nanoparticles using plant derivatives of Lawsonia inermis (Henna) and its surface modification for biomedical application. Nanatechnol Environ Eng. 2019;4:1–10.
Gharari Z, Hanachi P, Sadeghinia H, Walker TR. Eco-friendly green synthesis and characterization of silver nanoparticles by Scutellaria multicaulis leaf extract and its biological activities. Pharmaceuticals. 2023;16(7):992.
Article PubMed PubMed Central CAS Google Scholar
Geng B, Tao B, Li X, Wei W. Ni 2+/surfactant-assisted route to porous α-Fe₂O₃ nanoarchitectures. Nanoscale. 2012;4(5):1671–6.
Article PubMed CAS Google Scholar
Lozano M, Rodríguez-Ulibarri P, Echeverría J, Beruete M, Sorolla M, Beriain M. Mid-infrared spectroscopy (MIR) for simultaneous determination of fat and protein content in meat of several animal species. Food Anal Methods. 2017;10(10):3462–70.
Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Amjad Kamal M, et al. A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab. 2017;18(2):120–8.
Article PubMed CAS Google Scholar
Campaña AL, Saragliadis A, Mikheenko P, Linke D. Insights into the Bacterial Synthesis of Metal Nanoparticles. Front Nanotechnol. 2023;5:1216921.
Benhammada A, Trache D, Kesraoui M, Tarchoun AF, Chelouche S, Mezroua A. Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochimica acta. 2020;686:178570.
Hao C, Shen Y, Wang Z, Wang X, Feng F, Ge C, et al. Preparation and characterization of Fe2O3 nanoparticles by solid-phase method and its hydrogen peroxide sensing properties. ACS Sustain Chem Eng. 2016;4(3):1069–77.
Titus D, Samuel EJJ, Roopan SM. Nanoparticle characterization techniques. Green synthesis, characterization and applications of nanoparticles. Elsevier; 2019. pp. 303–19.
Kumar M, Dhiman SK, Bhat R, Saran S. In situ green synthesis of AgNPs in bacterial cellulose membranes and antibacterial properties of the composites against pathogenic bacteria. Polym Bull. 2024;81(8):6957–78.
Kalaba MH, El-Sherbiny GM, Ewais EA, Darwesh OM, Moghannem SA. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) by Streptomyces baarnensis and its active metabolite (Ka): a promising combination against multidrug-resistant ESKAPE pathogens and cytotoxicity. BMC Microbiol. 2024;24(1):254.
Article PubMed PubMed Central CAS Google Scholar
Philip S, Kuriakose S. Synthesis, characterization and antimicrobial properties of superparamagnetic α-Fe2O3 nanoparticles stabilized by biocompatible starch. J Cluster Sci. 2021;32(5):1339–49.
Rana P, Sharma S, Sharma R, Banerjee K. Apple pectin supported superparamagnetic (γ-Fe2O3) maghemite nanoparticles with antimicrobial potency. Mater Sci Energy Technol. 2019;2(1):15–21.
Al-Tememe E, Algalal HMAA, Abodood AAF, Mohammed KA, Khamees EJ, Zabibah RS, et al. Anticancer and Antimicrobial activity of PVA/Fe2O3/TiO2 hybrid nanocomposite. Int J Nanosci. 2022;21(03):2250018.
Vihodceva S, Šutka A, Sihtmäe M, Rosenberg M, Otsus M, Kurvet I, et al. Antibacterial activity of positively and negatively charged hematite (α-Fe2O3) nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri. Nanomaterials. 2021;11(3):652.
Article PubMed PubMed Central CAS Google Scholar
Muhammad W, Khan MA, Nazir M, Siddiquah A, Mushtaq S, Hashmi SS, et al. Papaver somniferum L. mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: In-vitro biological applications, biocompatibility and their potential towards HepG2 cell line. Mater Sci Engineering: C. 2019;103:109740.
Yoonus J, Resmi R, Beena B. Evaluation of antibacterial and anticancer activity of green synthesized iron oxide (α-Fe2O3) nanoparticles. Mater Today: Proc. 2021;46:2969–74.
Pallela PNVK, Ummey S, Ruddaraju LK, Gadi S, Cherukuri CS, Barla S et al. Antibacterial efficacy of green synthesized α-Fe2O3 nanoparticles using Sida cordifolia plant extract. Heliyon. 2019;5(11).
Comments (0)