Khan MZ, Hussain M, Khan AA, Hassan U, Akhter N, Hameed M, Mushtaq S, Awan UA. Frequency of non-diabetic renal disease in type 2 diabetes mellitus patients undergoing renal biopsy. J Ayub Med Coll Abbottabad. 2021;33(Suppl 1):S757–62.
Obrador GT, Levin A. CKD hotspots: challenges and areas of opportunity. Semin Nephrol. 2019;39(3):308–14. https://doi.org/10.1016/j.semnephrol.2019.02.009.
Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032–45. https://doi.org/10.2215/CJN.11491116.
Article PubMed PubMed Central CAS Google Scholar
Frampton JE, Empagliflozin. A review in type 2 diabetes. Drugs 78 (10), 1037–48. https://doi.org/10.1007/s40265-018-0937-z.
Cooper S, Teoh H, Campeau MA, Verma S, Leask RL. Empagliflozin restores the integrity of the endothelial glycocalyx in vitro. Mol Cell Biochem. 2019;459(1–2):121–30. https://doi.org/10.1007/s11010-019-03555-2.
Article PubMed CAS Google Scholar
Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney D. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation. 2017;136(17):1643–58. https://doi.org/10.1161/CIRCULATIONAHA.117.030012.
Article PubMed CAS Google Scholar
Shao Q, Meng L, Lee S, Tse G, Gong M, Zhang Z, Zhao J, Zhao Y, Li G, Liu T. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019a;18(1):165. https://doi.org/10.1186/s12933-019-0964-4.
Article PubMed PubMed Central CAS Google Scholar
Li C, Zhang J, Xue M, Li X, Han F, Liu X, Xu L, Lu Y, Cheng Y, Li T, Yu X, Sun B, Chen L. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18(1):15. https://doi.org/10.1186/s12933-019-0816-2.
Article PubMed PubMed Central Google Scholar
Zou R, Shi W, Qiu J, Zhou N, Du N, Zhou H, Chen X, Ma L. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 2022;21(1):106. https://doi.org/10.1186/s12933-022-01532-6.
Article PubMed PubMed Central CAS Google Scholar
Kolijn D, Pabel S, Tian Y, Lodi M, Herwig M, Carrizzo A, Zhazykbayeva S, Kovacs A, Fulop GA, Falcao-Pires I, Reusch PH, Linthout SV, Papp Z, van Heerebeek L, Vecchione C, Maier LS, Ciccarelli M, Tschope C, Mugge A, Bagi Z, Sossalla S, Hamdani N. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase galpha oxidation. Cardiovasc Res. 2021;117(2):495–507. https://doi.org/10.1093/cvr/cvaa123.
Article PubMed CAS Google Scholar
Tan Y, Yu K, Liang L, Liu Y, Song F, Ge Q, Fang X, Yu T, Huang Z, Jiang L, Wang P. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function after cardiac arrest in rats by enhancing mitochondrial energy metabolism. Front Pharmacol. 2021;12:758080. https://doi.org/10.3389/fphar.2021.758080.
Article PubMed PubMed Central CAS Google Scholar
Qiu H, Novikov A, Vallon V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives. Diabetes Metab Res Rev. 2017;33(5). https://doi.org/10.1002/dmrr.2886.
Zhou G, Soufan O, Ewald J, Hancock R, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47(W1):W234–41. https://doi.org/10.1093/nar/gkz240.
Article PubMed PubMed Central CAS Google Scholar
Wong CX, Ganesan AN, Selvanayagam JB. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J. 2017;38(17):1294–302. https://doi.org/10.1093/eurheartj/ehw045.
Article PubMed CAS Google Scholar
Sanchez J, Gomez JF, Martinez-Mateu L, Romero L, Saiz J, Trenor B. Heterogeneous effects of fibroblast-myocyte coupling in different regions of the human atria under conditions of atrial fibrillation. Front Physiol. 2019;10:847. https://doi.org/10.3389/fphys.2019.00847.
Article PubMed PubMed Central Google Scholar
Tam WC, Lin YK, Chan WP, Huang JH, Hsieh MH, Chen SA, Chen YJ. Pericardial fat is associated with the risk of ventricular arrhythmia in Asian patients. Circ J. 2016;80(8):1726–33. https://doi.org/10.1253/circj.CJ-16-0047.
Chang D, Zhang S, Yang D, Gao L, Lin Y, Chu Z, Jiang X, Yin X, Zheng Z, Wei X, You D, Xiao X, Cong P, Bian X, Xia Y, Yang Y. Effect of epicardial fat pad ablation on acute atrial electrical remodeling and inducibility of atrial fibrillation. Circ J. 2010;74(5):885–94. https://doi.org/10.1253/circj.cj-09-0967.
Saxon DR, Rasouli N, Eckel RH. Pharmacological prevention of cardiovascular outcomes in diabetes mellitus: established and emerging agents. Drugs. 2018;78. https://doi.org/10.1007/s40265-017-0857-3.
Jhuo SJ, Liu IH, Tasi WC, Chou TW, Lin YH, Wu BN, Lee KT, Lai WT. Characteristics of ventricular electrophysiological substrates in metabolic mice treated with empagliflozin. Int J Mol Sci. 2021;22(11). https://doi.org/10.3390/ijms22116105.
Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S, Espadero RM, Woerle HJ, Broedl UC, Johansen OE. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015;12(2):90–100. https://doi.org/10.1177/1479164114559852.
Article PubMed CAS Google Scholar
Shao Q, Meng L, Lee S, Tse G, Gong M, Zhang Z, Zhao J, Zhao Y, Li G, Liu T. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019b;18(1):165. https://doi.org/10.1186/s12933-019-0964-4.
Article PubMed PubMed Central CAS Google Scholar
Ring A, Brand T, Macha S, Breithaupt-Groegler K, Simons G, Walter B, Woerle HJ, Broedl UC. The sodium glucose cotransporter 2 inhibitor empagliflozin does not prolong QT interval in a thorough QT (TQT) study. Cardiovasc Diabetol. 2013;12:70. https://doi.org/10.1186/1475-2840-12-70.
Article PubMed PubMed Central CAS Google Scholar
Lee KT, Tang PW, Tsai WC, Liu IH, Yen HW, Voon WC, Wu BN, Sheu SH, Lai WT. Differential effects of central and peripheral fat tissues on the delayed rectifier K(+) outward currents in cardiac myocytes. Cardiology. 2013;125(2):118–24. https://doi.org/10.1159/000350360.
Jhuo SJ, Liu IH, Tsai WC, Chou TW, Lin YH, Wu BN, Lee KT, Lai WT. Effects of Secretome from Fat Tissues on Ion currents of Cardiomyocyte modulated by sodium-glucose transporter 2 inhibitor. Molecules. 2020;25(16). https://doi.org/10.3390/molecules25163606.
Lee HC, Chen CC, Tsai WC, Lin HT, Shiao YL, Sheu SH, Wu BN, Chen CH, Lai WT. Very-low-density lipoprotein of metabolic syndrome modulates gap junctions and slows cardiac conduction. Sci Rep. 2017;7(1):12050. https://doi.org/10.1038/s41598-017-11416-5.
Article PubMed PubMed Central CAS Google Scholar
Ladeiras-Lopes R, Moreira HT, Bettencourt N, Fontes-Carvalho R, Sampaio F, Ambale-Venkatesh B, Wu C, Liu K, Bertoni AG, Ouyang P, Bluemke DA, Lima JA. Metabolic syndrome is associated with impaired diastolic function independently of MRI-Derived myocardial extracellular volume: the MESA study. Diabetes. 2018;67(5):1007–12. https://doi.org/10.2337/db17-1496.
Article PubMed PubMed Central CAS Google Scholar
Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2(4):367–73. https://doi.org/10.2174/1573399810602040367.
Pellman J, Zhang J, Sheikh F. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: mechanisms and model systems. J Mol Cell Cardiol. 2016;94:22–31. https://doi.org/10.1016/j.yjmcc.2016.03.005.
Article PubMed PubMed Central CAS Google Scholar
Adamsson ES, Smith JG, Melander O, Hedblad B, Engstrom G. Inflammation-sensitive proteins and risk of atrial fibrillation: a population-based cohort study. Eur J Epidemiol. 2011;26(6):449–55. https://doi.org/10.1007/s10654-011-9565-6.
Hu YF, Yeh HI, Tsao HM, Tai CT, Lin YJ, Chang SL, Lo LW, Tuan TC, Tzeng CH, Huang SH, Lin YK, Chen SA. Impact of circulating monocyte CD36 level on atrial fibrillation and subsequent catheter ablation. Heart Rhythm. 2011;8(5):650–6. https://doi.org/10.1016/j.hrthm.2010.12.036.
Comments (0)