Mechanism of the cardioprotective effect of empagliflozin on diabetic nephropathy mice based on the basis of proteomics

Khan MZ, Hussain M, Khan AA, Hassan U, Akhter N, Hameed M, Mushtaq S, Awan UA. Frequency of non-diabetic renal disease in type 2 diabetes mellitus patients undergoing renal biopsy. J Ayub Med Coll Abbottabad. 2021;33(Suppl 1):S757–62.

Google Scholar 

Obrador GT, Levin A. CKD hotspots: challenges and areas of opportunity. Semin Nephrol. 2019;39(3):308–14. https://doi.org/10.1016/j.semnephrol.2019.02.009.

Article  PubMed  Google Scholar 

Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032–45. https://doi.org/10.2215/CJN.11491116.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Frampton JE, Empagliflozin. A review in type 2 diabetes. Drugs 78 (10), 1037–48. https://doi.org/10.1007/s40265-018-0937-z.

Cooper S, Teoh H, Campeau MA, Verma S, Leask RL. Empagliflozin restores the integrity of the endothelial glycocalyx in vitro. Mol Cell Biochem. 2019;459(1–2):121–30. https://doi.org/10.1007/s11010-019-03555-2.

Article  PubMed  CAS  Google Scholar 

Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney D. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation. 2017;136(17):1643–58. https://doi.org/10.1161/CIRCULATIONAHA.117.030012.

Article  PubMed  CAS  Google Scholar 

Shao Q, Meng L, Lee S, Tse G, Gong M, Zhang Z, Zhao J, Zhao Y, Li G, Liu T. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019a;18(1):165. https://doi.org/10.1186/s12933-019-0964-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li C, Zhang J, Xue M, Li X, Han F, Liu X, Xu L, Lu Y, Cheng Y, Li T, Yu X, Sun B, Chen L. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18(1):15. https://doi.org/10.1186/s12933-019-0816-2.

Article  PubMed  PubMed Central  Google Scholar 

Zou R, Shi W, Qiu J, Zhou N, Du N, Zhou H, Chen X, Ma L. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 2022;21(1):106. https://doi.org/10.1186/s12933-022-01532-6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kolijn D, Pabel S, Tian Y, Lodi M, Herwig M, Carrizzo A, Zhazykbayeva S, Kovacs A, Fulop GA, Falcao-Pires I, Reusch PH, Linthout SV, Papp Z, van Heerebeek L, Vecchione C, Maier LS, Ciccarelli M, Tschope C, Mugge A, Bagi Z, Sossalla S, Hamdani N. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase galpha oxidation. Cardiovasc Res. 2021;117(2):495–507. https://doi.org/10.1093/cvr/cvaa123.

Article  PubMed  CAS  Google Scholar 

Tan Y, Yu K, Liang L, Liu Y, Song F, Ge Q, Fang X, Yu T, Huang Z, Jiang L, Wang P. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function after cardiac arrest in rats by enhancing mitochondrial energy metabolism. Front Pharmacol. 2021;12:758080. https://doi.org/10.3389/fphar.2021.758080.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qiu H, Novikov A, Vallon V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives. Diabetes Metab Res Rev. 2017;33(5). https://doi.org/10.1002/dmrr.2886.

Zhou G, Soufan O, Ewald J, Hancock R, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47(W1):W234–41. https://doi.org/10.1093/nar/gkz240.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wong CX, Ganesan AN, Selvanayagam JB. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J. 2017;38(17):1294–302. https://doi.org/10.1093/eurheartj/ehw045.

Article  PubMed  CAS  Google Scholar 

Sanchez J, Gomez JF, Martinez-Mateu L, Romero L, Saiz J, Trenor B. Heterogeneous effects of fibroblast-myocyte coupling in different regions of the human atria under conditions of atrial fibrillation. Front Physiol. 2019;10:847. https://doi.org/10.3389/fphys.2019.00847.

Article  PubMed  PubMed Central  Google Scholar 

Tam WC, Lin YK, Chan WP, Huang JH, Hsieh MH, Chen SA, Chen YJ. Pericardial fat is associated with the risk of ventricular arrhythmia in Asian patients. Circ J. 2016;80(8):1726–33. https://doi.org/10.1253/circj.CJ-16-0047.

Article  PubMed  Google Scholar 

Chang D, Zhang S, Yang D, Gao L, Lin Y, Chu Z, Jiang X, Yin X, Zheng Z, Wei X, You D, Xiao X, Cong P, Bian X, Xia Y, Yang Y. Effect of epicardial fat pad ablation on acute atrial electrical remodeling and inducibility of atrial fibrillation. Circ J. 2010;74(5):885–94. https://doi.org/10.1253/circj.cj-09-0967.

Article  PubMed  Google Scholar 

Saxon DR, Rasouli N, Eckel RH. Pharmacological prevention of cardiovascular outcomes in diabetes mellitus: established and emerging agents. Drugs. 2018;78. https://doi.org/10.1007/s40265-017-0857-3.

Jhuo SJ, Liu IH, Tasi WC, Chou TW, Lin YH, Wu BN, Lee KT, Lai WT. Characteristics of ventricular electrophysiological substrates in metabolic mice treated with empagliflozin. Int J Mol Sci. 2021;22(11). https://doi.org/10.3390/ijms22116105.

Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S, Espadero RM, Woerle HJ, Broedl UC, Johansen OE. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015;12(2):90–100. https://doi.org/10.1177/1479164114559852.

Article  PubMed  CAS  Google Scholar 

Shao Q, Meng L, Lee S, Tse G, Gong M, Zhang Z, Zhao J, Zhao Y, Li G, Liu T. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019b;18(1):165. https://doi.org/10.1186/s12933-019-0964-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ring A, Brand T, Macha S, Breithaupt-Groegler K, Simons G, Walter B, Woerle HJ, Broedl UC. The sodium glucose cotransporter 2 inhibitor empagliflozin does not prolong QT interval in a thorough QT (TQT) study. Cardiovasc Diabetol. 2013;12:70. https://doi.org/10.1186/1475-2840-12-70.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee KT, Tang PW, Tsai WC, Liu IH, Yen HW, Voon WC, Wu BN, Sheu SH, Lai WT. Differential effects of central and peripheral fat tissues on the delayed rectifier K(+) outward currents in cardiac myocytes. Cardiology. 2013;125(2):118–24. https://doi.org/10.1159/000350360.

Article  PubMed  Google Scholar 

Jhuo SJ, Liu IH, Tsai WC, Chou TW, Lin YH, Wu BN, Lee KT, Lai WT. Effects of Secretome from Fat Tissues on Ion currents of Cardiomyocyte modulated by sodium-glucose transporter 2 inhibitor. Molecules. 2020;25(16). https://doi.org/10.3390/molecules25163606.

Lee HC, Chen CC, Tsai WC, Lin HT, Shiao YL, Sheu SH, Wu BN, Chen CH, Lai WT. Very-low-density lipoprotein of metabolic syndrome modulates gap junctions and slows cardiac conduction. Sci Rep. 2017;7(1):12050. https://doi.org/10.1038/s41598-017-11416-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ladeiras-Lopes R, Moreira HT, Bettencourt N, Fontes-Carvalho R, Sampaio F, Ambale-Venkatesh B, Wu C, Liu K, Bertoni AG, Ouyang P, Bluemke DA, Lima JA. Metabolic syndrome is associated with impaired diastolic function independently of MRI-Derived myocardial extracellular volume: the MESA study. Diabetes. 2018;67(5):1007–12. https://doi.org/10.2337/db17-1496.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2(4):367–73. https://doi.org/10.2174/1573399810602040367.

Article  PubMed  Google Scholar 

Pellman J, Zhang J, Sheikh F. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: mechanisms and model systems. J Mol Cell Cardiol. 2016;94:22–31. https://doi.org/10.1016/j.yjmcc.2016.03.005.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Adamsson ES, Smith JG, Melander O, Hedblad B, Engstrom G. Inflammation-sensitive proteins and risk of atrial fibrillation: a population-based cohort study. Eur J Epidemiol. 2011;26(6):449–55. https://doi.org/10.1007/s10654-011-9565-6.

Article  CAS  Google Scholar 

Hu YF, Yeh HI, Tsao HM, Tai CT, Lin YJ, Chang SL, Lo LW, Tuan TC, Tzeng CH, Huang SH, Lin YK, Chen SA. Impact of circulating monocyte CD36 level on atrial fibrillation and subsequent catheter ablation. Heart Rhythm. 2011;8(5):650–6. https://doi.org/10.1016/j.hrthm.2010.12.036.

Article 

Comments (0)

No login
gif