Kishida D, Ichikawa T, Takamatsu R, et al. Clinical characteristics and treatment of elderly onset adult-onset Still’s disease. Sci Rep. 2022;12:6787. https://doi.org/10.1038/s41598-022-10932-3.
Article CAS PubMed PubMed Central Google Scholar
Giacomelli R, Ruscitti P, Shoenfeld Y. A comprehensive review on adult onset Still’s disease. J Autoimmun. 2018;93:24–36. https://doi.org/10.1016/j.jaut.2018.07.018.
Gerfaud-Valentin M, Jamilloux Y, Iwaz J, et al. Adult-onset Still’s disease. Autoimmun Rev. 2014;13:708–22. https://doi.org/10.1016/j.autrev.2014.01.058.
Article CAS PubMed Google Scholar
Chen PK, Chen DY. An update on the pathogenic role of macrophages in Adult-onset Still’s Disease and its implication in clinical manifestations and novel therapeutics. J Immunol Res. 2021;2021:8998358. https://doi.org/10.1155/2021/8998358.
Article CAS PubMed PubMed Central Google Scholar
Ruscitti P, Cantarini L, Nigrovic PA, et al. Recent advances and evolving concepts in Still’s disease. Nat Rev Rheumatol. 2024;20:116–32. https://doi.org/10.1038/s41584-023-01065-6.
Ma Y, Wang M, Jia J, et al. Enhanced type I interferon signature induces neutrophil extracellular traps enriched in mitochondrial DNA in adult-onset Still’s disease. J Autoimmun. 2022;127:102793. https://doi.org/10.1016/j.jaut.2022.102793.
Article CAS PubMed Google Scholar
Feist E, Mitrovic S, Fautrel B. Mechanisms, biomarkers and targets for adult-onset Still’s disease. Nat Rev Rheumatol. 2018;14:603–18. https://doi.org/10.1038/s41584-018-0081-x.
Article PubMed PubMed Central Google Scholar
Girard C, Rech J, Brown M, et al. Elevated serum levels of free interleukin-18 in adult-onset Still’s disease. Rheumatology (Oxford). 2016;55:2237–47. https://doi.org/10.1093/rheumatology/kew300.
Article CAS PubMed Google Scholar
Billiau A, Matthys P. Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 2009;20:97–113. https://doi.org/10.1016/j.cytogfr.2009.02.004.
Article CAS PubMed Google Scholar
Han JH, Suh CH, Jung JY, et al. Elevated circulating levels of the interferon-γ-induced chemokines are associated with disease activity and cutaneous manifestations in adult-onset Still’s disease. Sci Rep. 2017;7:46652. https://doi.org/10.1038/srep46652.
Article PubMed PubMed Central Google Scholar
Ichikawa T, Shimojima Y, Kishida D, et al. The implication of interferon-γ-producing immunocompetent cells for evaluating disease activity and severity in adult-onset Still’s disease. Int J Rheum Dis. 2021;24:1176–85. https://doi.org/10.1111/1756-185x.14171.
Article CAS PubMed Google Scholar
Di Cola I, Ruscitti P, Giacomelli R, et al. The pathogenic role of interferons in the hyperinflammatory response on Adult-onset Still's Disease and macrophage activation syndrome: Paving the way towards new therapeutic targets. J Clin Med. 2021;10. https://doi.org/10.3390/jcm10061164.
Lu M, Teng L, Xu Y, et al. Performance of interferon-gamma levels may lead to earlier diagnosing macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2023;21:115. https://doi.org/10.1186/s12969-023-00907-7.
Article PubMed PubMed Central Google Scholar
Shimojima Y, Kishida D, Ueno KI, et al. Characteristics of circulating natural killer cells and their interferon-γ production in active Adult-onset Still Disease. J Rheumatol. 2019;46:1268–76. https://doi.org/10.3899/jrheum.181192.
Article CAS PubMed Google Scholar
Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev. 2018;281:138–53. https://doi.org/10.1111/imr.12616.
Article CAS PubMed Google Scholar
Vandenhaute J, Wouters CH, Matthys P. Natural killer cells in systemic autoinflammatory diseases: A focus on systemic juvenile idiopathic arthritis and macrophage activation syndrome. Front Immunol. 2019;10:3089. https://doi.org/10.3389/fimmu.2019.03089.
Article CAS PubMed Google Scholar
Cooper MA, Yokoyama WM. Memory-like responses of natural killer cells. Immunol Rev. 2010;235:297–305. https://doi.org/10.1111/j.0105-2896.2010.00891.x.
Article CAS PubMed PubMed Central Google Scholar
Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front Immunol. 2022;13:960852. https://doi.org/10.3389/fimmu.2022.960852.
Article CAS PubMed PubMed Central Google Scholar
Braud VM, Allan DS, O’Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391:795–9. https://doi.org/10.1038/35869.
Article CAS PubMed Google Scholar
Yamaguchi M, Ohta A, Tsunematsu T, et al. Preliminary criteria for classification of adult Still’s disease. J Rheumatol. 1992;19:424–30.
Pouchot J, Sampalis JS, Beaudet F, et al. Adult Still’s disease: Manifestations, disease course, and outcome in 62 patients. Medicine (Baltimore). 1991;70:118–36.
Article CAS PubMed Google Scholar
Ravelli A, Minoia F, Davi S, et al. 2016 classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: A European League against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Arthritis Rheumatol. 2016;68:566–76. https://doi.org/10.1002/art.39332.
Ahn SS, Yoo BW, Jung SM, et al. Application of the 2016 EULAR/ACR/PRINTO classification criteria for macrophage activation syndrome in patients with Adult-onset Still Disease. J Rheumatol. 2017;44:996–1003. https://doi.org/10.3899/jrheum.161286.
Article CAS PubMed Google Scholar
Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8:533–44. https://doi.org/10.1038/nri2356.
Article CAS PubMed Google Scholar
Chistiakov DA, Bobryshev YV, Orekhov AN. Changes in transcriptome of macrophages in atherosclerosis. J Cell Mol Med. 2015;19:1163–73. https://doi.org/10.1111/jcmm.12591.
Article CAS PubMed PubMed Central Google Scholar
Marimuthu R, Francis H, Dervish S, et al. Characterization of human monocyte subsets by whole blood flow cytometry analysis. J Vis Exp. 2018:57941. https://doi.org/10.3791/57941.
Romero P, Ortega C, Palma A, et al. Expression of CD94 and NKG2 molecules on human CD4(+) T cells in response to CD3-mediated stimulation. J Leukoc Biol. 2001;70:219–24.
Article CAS PubMed Google Scholar
Kanevskiy L, Erokhina S, Kobyzeva P, et al. Dimorphism of HLA-E and its disease association. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20215496.
Camilli G, Cassotta A, Battella S, et al. Regulation and trafficking of the HLA-E molecules during monocyte-macrophage differentiation. J Leukoc Biol. 2016;99:121–30. https://doi.org/10.1189/jlb.1A0415-172R.
Article CAS PubMed Google Scholar
Alexander NO, Varvara AO, Nikita GN, et al. Monocyte differentiation and macrophage polarization. Vessel Plus. 2019;3:10. https://doi.org/10.20517/2574-1209.2019.04.
Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55. https://doi.org/10.1016/s1471-4906(02)02302-5.
Article CAS PubMed Google Scholar
Wang Y, Yan K, Lin J, et al. Macrophage M2 co-expression factors correlate with the immune microenvironment and predict outcome of renal clear cell carcinoma. Front Genet. 2021;12:615655. https://doi.org/10.3389/fgene.2021.615655.
Comments (0)