Adjami Y, Daas H, Ghanem R, et al. 2013 Effets des attaques d’insectes sur les glands de chêne-liège: Impact sur le pouvoir germinatif. Geo-Eco-Trop 37 201–210
Adjami Y, Ghanem R, Daas H, et al. 2016 Influence of carpophagous attack on metabolites of cork oak (Quercus suber) acorns. Turk. J. For. 17 51–57
Alara OR, Abdurahman NH, Ukaegbu CI, et al. 2018 Vernonia cinerea leaves as the source of phenolic compounds, antioxidants, and anti-diabetic activity using microwave-assisted extraction technique. Ind. Crop. Prod. 122 533–544
Bartlow AW, Agosta SJ, Curtis R, et al. 2018 Acorn size and tolerance to seed predators: the multiple roles of acorns as food for seed predators, fruit for dispersal and fuel for growth. Integr. Zool. 13 251–266
Bonal R and Munoz A 2008 Seed growth suppression constrains the growth of seed parasites: premature acorn abscission reduces Curculio elephas larval size. Ecol. Entomol. 33 31–36
Bonal R, Munoz A and Díaz M 2007 Satiation of predispersal seed predators: the importance of considering both plant and seed levels. Evol. Ecol. 21 367–380
Bouchaour-Djabeur S, Benabdeli K, Bejamaa ML, et al. 2011 Déprédation des glands de chêne liège par les insectes et possibilités de germination et de croissance des semis. Geo-Eco-Trop 35 69–80
Bouchaour-Djabeur S, Benabdeli K and Taib N 2021 Glands de chêne-liège de la subéraie Hafir-Zarieffet (Tlemcen, Algérie): caractéristiques, état sanitaire et infestation par les insectes. Geo-Eco-Trop 45 599–615
Branco M, Branco C, Merouani H, et al. 2002 Germination success, survival and seedling vigour of Quercus suber acorns in relation to insect damage. For. Ecol. Manage. 166 159–164
Brenes-Arguedas T and Coley PD 2005 Phenotypic variation and spatial structure of secondary chemistry in a natural population of a tropical tree species. Oikos 108 410–420
Canelo T, Gaytán Á, Pérez-Izquierdo C, et al. 2021 Effects of longer droughts on holm oak Quercus ilex L. acorn pests: consequences for infestation rates, seed biomass and embryo survival. Diversity 13 110
Cohen SD and Kennedy JA 2010 Plant metabolism and the environment: implications for managing phenolics. Crit. Rev. Food Sci. Nutr. 50 620–643
Article CAS PubMed Google Scholar
Csóka G and Csókáné Hirka A 2006 Direct effects of carpophagous insects on the germination ability and early abscission of oak acorns. Acta Silv. Lign. Hung. 2 57–67
Del Valle JC, Buide ML, Casimiro-Soriguer I, et al. 2015 On flavonoid accumulation in different plant parts: variation patterns among individuals and populations in the shore campion (Silene littorea). Front. Plant Sci. 6 939
PubMed PubMed Central Google Scholar
Djeridane A, Yousfi M, Nadjemi B, et al. 2006 Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97 654–660
Ghasemzadeh A and Ghasemzadeh N 2011 Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plants Res. 5 6697–6703
Giertych MJ and Chmielarz P 2020 Size variability in embryonic axes, cotyledons, acorns and seedlings in fifteen species of the genus Quercus. Trees 34 593–601
Golan K, Sempruch C, Górska-Drabik E, et al. 2017 Accumulation of amino acids and phenolic compounds in biochemical plant responses to feeding of two different herbivorous arthropod pests. Arthropod-Plant Interact. 11 675–682
Gómez JM 2004 Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution 58 71–80
Granados-Sánchez D, Ruíz-Puga P and Barrera-Escorcia H 2008 Ecología de la herbivoría. Rev. Chapingo Ser. cienc. For. y del Ambient. 14 51–63
Horsáková J, Sochor J and Krška B 2013 Assessment of antioxidant activity and total polyphenolic compounds of peach varieties infected with the Plum pox virus. Acta Univ. Agric. Silvic. Mendel. Brun. 187 1693–1701
Igueld SB, Abidi H, Trabelsi-Ayadi M, et al. 2015 Study of physicochemicals characteristics and antioxidant capacity of cork oak acorns (Quercus suber L.) grown in three regions in Tunisia. J. Appl. Pharm. Sci. 5 026–032
Ikonen A, Tahvanainen J and Roininen H 2001 Chlorogenic acid as an antiherbivore defence of willows against leaf beetles. Entomol. Exp. Appl. 99 47–54
Jan R, Asaf S, Numan M, et al. 2021 Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 11 968
Jdaidi N, Chaabane A, Toumi L, et al. 2018 Influence de l’état sanitaire des glands sur la régénération de Quercus suber en Tunisie. Rev. Ecol.-Terre Vie. 73 71–79
Kovalikova Z, Kubes J, Skalicky M, et al. 2019 Changes in content of polyphenols and ascorbic acid in leaves of white cabbage after pest infestation. Molecules 24 2622
Article CAS PubMed PubMed Central Google Scholar
Kumari A, Goyal M, Mittal A, et al. 2022 Defensive capabilities of contrasting sorghum genotypes against Atherigona soccata (Rondani) infestation. Protoplasma 259 809–822
Article CAS PubMed Google Scholar
Maghnia FZ, Abbas Y, Mahé F, et al. 2019 The rhizosphere microbiome: A key component of sustainable cork oak forests in trouble. For. Ecol. Manage. 434 29–39
Makhlouf FZ, Squeo G, Barkat M, et al. 2019 Comparative study of total phenolic content and antioxidant proprieties of Quercus fruit: flour and oil. North Afr. J. Food Nutr. Res. 3 148–155
Mechergui T, Pardos M and Jacobs DF 2021 Effect of acorn size on survival and growth of Quercus suber L. seedlings under water stress. Eur. J. for. Res. 140 175–186
Merouani H, Branco C, Almeida MH, et al. 2001a Comportement physiologique des glands de chêne liège (Quercus suber L.) durant leur conservation et variabilité inter-individus producteurs. Ann. For. Sci. 58 143–153
Merouani H, Branco C, Almeida MH, et al. 2001b Effects of acorn storage duration and parental tree on emergence and physiological status of cork oak (Quercus suber L.) seedlings. Ann. For. Sci. 58 543–554
Mezquida ET, Caputo P and Acebes P 2021 Acorn crop, seed size and chemical defenses determine the performance of specialized insect predators and reproductive output in a Mediterranean oak. Insects 12 721
Mitra A, Kataki S, Singh AN, et al. 2021 Plant stress, acclimation, and adaptation: a review; in: Plant growth and stress physiology (Eds.) Gupta DK and Palma JM (Cham: Springer International Publishing) pp 1–22
Nagrare V, Sheeba JA, Bhoyar P, et al. 2017 Biochemical changes in cotton plants due to infestation by cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Appl. Nat. Sci. 9 382–388
Nocchi N, Duarte HM, Pereira RC, et al. 2020 Effects of UV-B radiation on secondary metabolite production, antioxidant activity, photosynthesis and herbivory interactions in Nymphoides humboldtiana (Menyanthaceae). J. Photochem. Photobiol. B Biol. 212 112021
Nouira S 2012 Relation entre les chenilles d’Orgyia trigotephras (Lepidoptera, Lymantriidae), insecte polyphage ravageur du chêne-liège, et ses plantes hôtes en Tunisie. IOBC/WPRS Bull. 76 271–278
Oyaizu M 1986 Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 44 307–315
Pesendorfer MB 2014 The effect of seed size variation in Quercus pacifica on seedling establishment and growth. Gen. Tech. Rep. PSW-GTR-251 407–412
Pio C, Silva P, Cerqueira M, et al. 2005 Diurnal and seasonal emissions of volatile organic compounds from cork oak (Quercus suber) trees. Atmos. Environ. 39 1817–1827
Punithavalli M, Muthukrishnan N and Rajkuma MB 2013 Defensive responses of rice genotypes for resistance against rice leaffolder Cnaphalocrocis medinalis. Rice Sci. 20 363–370
Ramírez-Valiente J, Valladares F, Gil L, et al. 2009 Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). For. Ecol. Manage. 257 1676–1683
Sage RD, Koenig WD and McLaughlin BC 2011 Fitness consequences of seed size in the valley oak Quercus lobata Née (Fagaceae). Ann. For. Sci. 68 477–484
Schaaf J, Walter MH and Hess D 1995 Primary metabolism in plant defense (regulation of a bean malic enzyme gene promoter in transgenic tobacco by developmental and environmental cues). Plant Physiol. 108 949–960
Article CAS PubMed PubMed Central Google Scholar
Scott ER, Li X, Wei J-P, et al. 2020 Changes in tea plant secondary metabolite profiles as a function of leafhopper density and damage. Front. Plant Sci. 11 636
Comments (0)