Considerations in the search for epistasis

Verweij KJH, Yang J, Lahti J, Veijola J, Hintsanen M, Pulkki-Råback L, et al. Maintenance of genetic variation in human personality: testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding. Evolution. 2012;66:3238–51.

Article  PubMed  PubMed Central  Google Scholar 

Segrè D, Deluna A, Church GM, Kishony R. Modular epistasis in yeast metabolism. Nat Genet. 2005;37:77–83.

Article  PubMed  Google Scholar 

Sameith K, Amini S, Groot Koerkamp MJA, van Leenen D, Brok M, Brabers N, et al. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions. BMC Biol. 2015;13:112.

Article  PubMed  PubMed Central  Google Scholar 

Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47:702–9.

Article  PubMed  CAS  Google Scholar 

Patel RA, Musharoff SA, Spence JP, Pimentel H, Tcheandjieu C, Mostafavi H, et al. Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and complex traits. Am J Hum Genet. 2022;109:1286–97.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li J, Li X, Zhang S, Snyder M. Gene-environment interaction in the era of precision medicine. Cell. 2019;177:38–44.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mackay TF, Moore JH. Why epistasis is important for tackling complex human disease genetics. Genome Med. 2014;6:124.

Article  PubMed  Google Scholar 

Russ D, Williams JA, Cardoso VR, Bravo-Merodio L, Pendleton SC, Aziz F, et al. Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models. PLoS ONE. 2022;17:e0263390.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mäki-Tanila A, Hill WG. Influence of gene interaction on complex trait variation with multilocus models. Genetics. 2014;198:355–67.

Article  PubMed  PubMed Central  Google Scholar 

Cordell HJ. Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet. 2002;11:2463–8.

Article  PubMed  CAS  Google Scholar 

Epistasis and evolution. Evolutionary biology. Oxford University Press; 2021. Available from: https://oxfordbibliographies.com/view/document/obo-9780199941728/obo-9780199941728-0137.xml.

Poelwijk FJ, Krishna V, Ranganathan R. The context-dependence of mutations: a linkage of formalisms. PLoS Comput Biol. 2016;12:e1004771.

Article  PubMed  PubMed Central  Google Scholar 

Wan X, Yang C, Yang Q, Xue H, Fan X, Tang NLS, et al. BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am J Hum Genet. 2010;87:325–40.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bayat A, Hosking B, Jain Y, Hosking C, Kodikara M, Reti D, et al. Fast and accurate exhaustive higher-order epistasis search with BitEpi. Sci Rep. 2021;11:1–12.

Article  Google Scholar 

Ponte-Fernández C, González-Domínguez J, Martín MJ. Fiuncho: a program for any-order epistasis detection in CPU clusters. J Supercomput. 2022;78:15338–57.

Article  Google Scholar 

Balvert M. Iterative rule extension for logic analysis of data: an MILP-based heuristic to derive interpretable binary classifiers from large data sets. INFORMS J Comput. 2024. Available from: https://doi.org/10.1287/ijoc.2021.0284.

Pattin KA, White BC, Barney N, Gui J, Nelson HH, Kelsey KT, et al. A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genet Epidemiol. 2009;33:87–94.

Article  PubMed  PubMed Central  Google Scholar 

Aghazadeh A, Nisonoff H, Ocal O, Brookes DH, Huang Y, Koyluoglu OO, et al. Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions. Nat Commun. 2021;12:5225.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Motsinger-Reif AA, Fanelli TJ, Davis AC, Ritchie MD. Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error. BMC Res Notes. 2008;1:65.

Article  PubMed  PubMed Central  Google Scholar 

Li X, Liu L, Zhou J, Wang C. Heterogeneity analysis and diagnosis of complex diseases based on deep learning method. Sci Rep. 2018;8:6155.

Article  PubMed  PubMed Central  Google Scholar 

Slim L, Chatelain C, Azencott C-A, Vert J-P. Novel methods for epistasis detection in genome-wide association studies. PLoS ONE. 2020;15:e0242927.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chang YC, Wu JT, Hong MY, Tung YA, Hsieh PH, Yee SW, et al. GenEpi: gene-based epistasis discovery using machine learning. BMC Bioinformatics. 2020;21:68.

Article  PubMed  PubMed Central  Google Scholar 

Knijnenburg TA, Klau GW, Iorio F, Garnett MJ, McDermott U, Shmulevich I, et al. Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy. Sci Rep. 2016;6:1–14.

Article  Google Scholar 

Sun Y, Gu Y, Ren Q, Li Y, Shang J, Liu JX, et al. MDSN: a module detection method for identifying high-order epistatic interactions. Genes. 2022;13. Available from: https://doi.org/10.3390/genes13122403.

Weinreich DM, Lan Y, Jaffe J, Heckendorn RB. The influence of higher-order epistasis on biological fitness landscape topography. J Stat Phys. 2018;172:208–25.

Article  PubMed  PubMed Central  Google Scholar 

Weinreich DM, Lan Y, Wylie CS, Heckendorn RB. Should evolutionary geneticists worry about higher-order epistasis? Curr Opin Genet Dev. 2013;23:700–7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Beam AL, Motsinger-Reif A, Doyle J. Bayesian neural networks for detecting epistasis in genetic association studies. BMC Bioinformatics. 2014;15:368.

Article  PubMed  PubMed Central  Google Scholar 

Cui T, El Mekkaoui K, Reinvall J, Havulinna AS, Marttinen P, Kaski S. Gene-gene interaction detection with deep learning. Commun Biol. 2022;5:1238.

Article  PubMed  PubMed Central  Google Scholar 

Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signals Systems. 1992;5:455–455.

Article  Google Scholar 

Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2:359–66.

Article  Google Scholar 

Lunetta KL, Hayward LB, Segal J, Van Eerdewegh P. Screening large-scale association study data: exploiting interactions using random forests. BMC Genet. 2004;5:32.

Article  PubMed  PubMed Central  Google Scholar 

Jiang R, Tang W, Wu X, Fu W. A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinformatics. 2009;10(Suppl 1):S65.

Article  PubMed  PubMed Central  Google Scholar 

Yoshida M, Koike A. SNPInterForest: a new method for detecting epistatic interactions. BMC Bioinformatics. 2011;12:469.

Article  PubMed  PubMed Central  Google Scholar 

Botta V, Louppe G, Geurts P, Wehenkel L. Exploiting SNP correlations within random forest for genome-wide association studies. PLoS ONE. 2014;9:e93379.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif