Ganguly A, Chen Z. Li-Fraumeni syndrome. Mol Pathol Clin Pract. 2016. https://doi.org/10.1007/978-3-319-19674-9_28.
Li FP, Fraumeni JF Jr. Soft-tissue sarcomas, breast cancer, and other neoplasms. Ann Int Med. 1969;71(4):747–52. https://doi.org/10.7326/0003-4819-71-4-747.
Article PubMed CAS Google Scholar
Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.
Gargallo P, Yáñez Y, Vanessa S, Juan A, Torres B, Balaguer J, et al. Li–Fraumeni syndrome heterogeneity. Clin Trans Oncol. 2020;22:978–88.
Giacomazzi Cristina R, Giacomazzi J, Netto Cristina BO, Santos-Silva P, Selistre Simone G, Maia AL, et al. Pediatric cancer and Li-Fraumeni/Li-Fraumeni-like syndromes: a review for the pediatrician. Rev Assoc Med Bras. 2015;61:282–9.
Hendrickson PG, Luo Y, Kohlmann W, Schiffman J, Maese L, Bishop AJ, et al. Radiation therapy and secondary malignancy in Li-Fraumeni syndrome: a hereditary cancer registry study. Cancer Med. 2020;9(21):7954–63.
Article PubMed PubMed Central CAS Google Scholar
Petry V, Bonadio Renata C, Cagnacci Allyne QC, Senna Luiz Antonio L, Campos RNG, Cotti GC, et al. Radiotherapy-induced malignancies in breast cancer patients with TP53 pathogenic germline variants (Li–Fraumeni syndrome). Fam Cancer. 2020;19:47–53.
Article PubMed CAS Google Scholar
Correa H. Li–Fraumeni syndrome. J Pediat Genet. 2016. https://doi.org/10.1055/s-0036-1579759.
Zeng HH, Yang Z, Qiu YB, Bashir S, Li Y, Xu M. Detection of a novel panel of 24 genes with high frequencies of mutation in gastric cancer based on next-generation sequencing. World J Clin Cases. 2022;10(15):4761–75. https://doi.org/10.12998/wjcc.v10.i15.4761.
Article PubMed PubMed Central Google Scholar
Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules. 2020. https://doi.org/10.3390/biom10030420.
Article PubMed PubMed Central Google Scholar
Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem. 2022;123(12):1891–937. https://doi.org/10.1002/jcb.30331.
Article PubMed CAS Google Scholar
Marei HE, Althani A, Afifi N, Hasan A, Thomas C, Giacomo P, et al. p53 signaling in cancer progression and therapy. Cancer cell Int. 2021;21(1):1–15.
Yan S, Varda R, Ronit A-G. Gain-of-function mutant p53: all the roads lead to tumorigenesis. Int J Mol Sci. 2019;20(24):6197.
Zhou X, Hao Q, Hua L. Mutant p53 in cancer therapy—the barrier or the path. J Mol Cell Biol. 2018;11(4):293–305. https://doi.org/10.1093/jmcb/mjy072.
Article PubMed Central CAS Google Scholar
Hainaut P. TP53: coordinator of the processes that underlie the hallmarks of cancer. p53 in the Clinics. Springer 2012. p. 1–23.
Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Different. 2019;26(2):199–212. https://doi.org/10.1038/s41418-018-0246-9.
Xiaohua C, Zhang Taotao Su, Wei DZ, Dapeng Z, Xiaodong J, et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 2022;13(11):974. https://doi.org/10.1038/s41419-022-05408-1.
Stengel A, Schnittger S, Weissmann S, Kuznia S, Kern W, Kohlmann A, et al. TP53 mutations occur in 15.7% of ALL and are associated with MYC-rearrangement, low hypodiploidy, and a poor prognosis. Blood. 2014;124(2):251–8. https://doi.org/10.1182/blood-2014-02-558833.
Article PubMed CAS Google Scholar
Teroerde M, Nientiedt C, Duensing A, Hohenfellner M, Stenzinger A, Duensing S. Revisiting the role of p53 in prostate cancer. 2021.
D’Orazio JA. Inherited cancer syndromes in children and young adults. J Pediatr Hematol Oncol. 2010;32(3):195–228. https://doi.org/10.1097/MPH.0b013e3181ced34c.
Baugh EH, Hua K, Levine AJ, Bonneau RA, Chan CS. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Different. 2018;25(1):154–60. https://doi.org/10.1038/cdd.2017.180.
Hiroko N, Kinga S, Hidetaka Y, Yuji I, Marta G, Jelena Š, et al. Non-CpG sites preference in G:C > A: t transition of TP53 in gastric cancer of Eastern Europe (Poland, Romania and Hungary) compared to East Asian countries (China and Japan). Genes Environ. 2023;45(1):1. https://doi.org/10.1186/s41021-022-00257-y.
Campo E, Cymbalista F, Ghia P, Jäger U, Pospisilova S, Rosenquist R, et al. TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica. 2018;103(12):1956–68. https://doi.org/10.3324/haematol.2018.187583.
Article PubMed PubMed Central CAS Google Scholar
Silwal-Pandit L, Vollan Hans KM, Suet-Feung C, Rueda OM, McKinney S, Osako T, et al. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin Cancer Res. 2014;20(13):3569–80. https://doi.org/10.1158/1078-0432.ccr-13-2943.
Article PubMed CAS Google Scholar
Ozaki T, Nakagawara A. Role of p53 in cell death and human cancers. Cancers. 2011;3(1):994–1013. https://doi.org/10.3390/cancers3010994.
Article PubMed PubMed Central CAS Google Scholar
Aubrey BJ, Kelly GL, Ana J, Herold MJ, Andreas S. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Different. 2018;25(1):104–13. https://doi.org/10.1038/cdd.2017.169.
Végran F, Rebucci M, Chevrier S, Cadouot M, Boidot R, Lizard-Nacol S. Only missense mutations affecting the DNA binding domain of p53 influence outcomes in patients with breast carcinoma. PLoS ONE. 2013;8(1): e55103. https://doi.org/10.1371/journal.pone.0055103.
Article PubMed PubMed Central CAS Google Scholar
Fischer NW, Ma YV, Gariépy J. Emerging insights into ethnic-specific TP53 germline variants. J Natl Cancer Inst. 2023;115(10):1145–56. https://doi.org/10.1093/jnci/djad106.
Article PubMed PubMed Central CAS Google Scholar
Stieg DC, Parris JLD, Yang THL, Mirji G, Reiser SK, Murali N, et al. The African-centric P47S variant of TP53 confers immune dysregulation and impaired response to immune checkpoint inhibition. Cancer Res Commun. 2023;3(7):1200–11. https://doi.org/10.1158/2767-9764.crc-23-0149.
Article PubMed PubMed Central CAS Google Scholar
Pinto EM, Figueiredo BC, Chen W, Galvao HCR, Formiga MN, Mcbv F, et al. XAF1 as a modifier of p53 function and cancer susceptibility. Sci Adv. 2020. https://doi.org/10.1126/sciadv.aba3231.
Article PubMed PubMed Central Google Scholar
de Vries A, Flores ER, Miranda B, Hsieh HM, van Oostrom CT, Sage J, et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA. 2002;99(5):2948–53. https://doi.org/10.1073/pnas.052713099.
Article PubMed PubMed Central CAS Google Scholar
Chiang YT, Chien YC, Lin YH, Wu HH, Lee DF, Yu YL. The function of the mutant p53–R175H in cancer. Cancers. 2021. https://doi.org/10.3390/cancers13164088.
Comments (0)