Current insights and future directions of Li-Fraumeni syndrome

Ganguly A, Chen Z. Li-Fraumeni syndrome. Mol Pathol Clin Pract. 2016. https://doi.org/10.1007/978-3-319-19674-9_28.

Article  Google Scholar 

Li FP, Fraumeni JF Jr. Soft-tissue sarcomas, breast cancer, and other neoplasms. Ann Int Med. 1969;71(4):747–52. https://doi.org/10.7326/0003-4819-71-4-747.

Article  PubMed  CAS  Google Scholar 

Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.

PubMed  CAS  Google Scholar 

Gargallo P, Yáñez Y, Vanessa S, Juan A, Torres B, Balaguer J, et al. Li–Fraumeni syndrome heterogeneity. Clin Trans Oncol. 2020;22:978–88.

Article  CAS  Google Scholar 

Giacomazzi Cristina R, Giacomazzi J, Netto Cristina BO, Santos-Silva P, Selistre Simone G, Maia AL, et al. Pediatric cancer and Li-Fraumeni/Li-Fraumeni-like syndromes: a review for the pediatrician. Rev Assoc Med Bras. 2015;61:282–9.

Article  PubMed  Google Scholar 

Hendrickson PG, Luo Y, Kohlmann W, Schiffman J, Maese L, Bishop AJ, et al. Radiation therapy and secondary malignancy in Li-Fraumeni syndrome: a hereditary cancer registry study. Cancer Med. 2020;9(21):7954–63.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Petry V, Bonadio Renata C, Cagnacci Allyne QC, Senna Luiz Antonio L, Campos RNG, Cotti GC, et al. Radiotherapy-induced malignancies in breast cancer patients with TP53 pathogenic germline variants (Li–Fraumeni syndrome). Fam Cancer. 2020;19:47–53.

Article  PubMed  CAS  Google Scholar 

Correa H. Li–Fraumeni syndrome. J Pediat Genet. 2016. https://doi.org/10.1055/s-0036-1579759.

Article  Google Scholar 

Zeng HH, Yang Z, Qiu YB, Bashir S, Li Y, Xu M. Detection of a novel panel of 24 genes with high frequencies of mutation in gastric cancer based on next-generation sequencing. World J Clin Cases. 2022;10(15):4761–75. https://doi.org/10.12998/wjcc.v10.i15.4761.

Article  PubMed  PubMed Central  Google Scholar 

Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules. 2020. https://doi.org/10.3390/biom10030420.

Article  PubMed  PubMed Central  Google Scholar 

Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem. 2022;123(12):1891–937. https://doi.org/10.1002/jcb.30331.

Article  PubMed  CAS  Google Scholar 

Marei HE, Althani A, Afifi N, Hasan A, Thomas C, Giacomo P, et al. p53 signaling in cancer progression and therapy. Cancer cell Int. 2021;21(1):1–15.

Article  Google Scholar 

Yan S, Varda R, Ronit A-G. Gain-of-function mutant p53: all the roads lead to tumorigenesis. Int J Mol Sci. 2019;20(24):6197.

Article  Google Scholar 

Zhou X, Hao Q, Hua L. Mutant p53 in cancer therapy—the barrier or the path. J Mol Cell Biol. 2018;11(4):293–305. https://doi.org/10.1093/jmcb/mjy072.

Article  PubMed Central  CAS  Google Scholar 

Hainaut P. TP53: coordinator of the processes that underlie the hallmarks of cancer. p53 in the Clinics. Springer 2012. p. 1–23.

Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Different. 2019;26(2):199–212. https://doi.org/10.1038/s41418-018-0246-9.

Article  Google Scholar 

Xiaohua C, Zhang Taotao Su, Wei DZ, Dapeng Z, Xiaodong J, et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 2022;13(11):974. https://doi.org/10.1038/s41419-022-05408-1.

Article  CAS  Google Scholar 

Stengel A, Schnittger S, Weissmann S, Kuznia S, Kern W, Kohlmann A, et al. TP53 mutations occur in 15.7% of ALL and are associated with MYC-rearrangement, low hypodiploidy, and a poor prognosis. Blood. 2014;124(2):251–8. https://doi.org/10.1182/blood-2014-02-558833.

Article  PubMed  CAS  Google Scholar 

Teroerde M, Nientiedt C, Duensing A, Hohenfellner M, Stenzinger A, Duensing S. Revisiting the role of p53 in prostate cancer. 2021.

D’Orazio JA. Inherited cancer syndromes in children and young adults. J Pediatr Hematol Oncol. 2010;32(3):195–228. https://doi.org/10.1097/MPH.0b013e3181ced34c.

Article  PubMed  Google Scholar 

Baugh EH, Hua K, Levine AJ, Bonneau RA, Chan CS. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Different. 2018;25(1):154–60. https://doi.org/10.1038/cdd.2017.180.

Article  CAS  Google Scholar 

Hiroko N, Kinga S, Hidetaka Y, Yuji I, Marta G, Jelena Š, et al. Non-CpG sites preference in G:C > A: t transition of TP53 in gastric cancer of Eastern Europe (Poland, Romania and Hungary) compared to East Asian countries (China and Japan). Genes Environ. 2023;45(1):1. https://doi.org/10.1186/s41021-022-00257-y.

Article  CAS  Google Scholar 

Campo E, Cymbalista F, Ghia P, Jäger U, Pospisilova S, Rosenquist R, et al. TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica. 2018;103(12):1956–68. https://doi.org/10.3324/haematol.2018.187583.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Silwal-Pandit L, Vollan Hans KM, Suet-Feung C, Rueda OM, McKinney S, Osako T, et al. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin Cancer Res. 2014;20(13):3569–80. https://doi.org/10.1158/1078-0432.ccr-13-2943.

Article  PubMed  CAS  Google Scholar 

Ozaki T, Nakagawara A. Role of p53 in cell death and human cancers. Cancers. 2011;3(1):994–1013. https://doi.org/10.3390/cancers3010994.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aubrey BJ, Kelly GL, Ana J, Herold MJ, Andreas S. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Different. 2018;25(1):104–13. https://doi.org/10.1038/cdd.2017.169.

Article  CAS  Google Scholar 

Végran F, Rebucci M, Chevrier S, Cadouot M, Boidot R, Lizard-Nacol S. Only missense mutations affecting the DNA binding domain of p53 influence outcomes in patients with breast carcinoma. PLoS ONE. 2013;8(1): e55103. https://doi.org/10.1371/journal.pone.0055103.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fischer NW, Ma YV, Gariépy J. Emerging insights into ethnic-specific TP53 germline variants. J Natl Cancer Inst. 2023;115(10):1145–56. https://doi.org/10.1093/jnci/djad106.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stieg DC, Parris JLD, Yang THL, Mirji G, Reiser SK, Murali N, et al. The African-centric P47S variant of TP53 confers immune dysregulation and impaired response to immune checkpoint inhibition. Cancer Res Commun. 2023;3(7):1200–11. https://doi.org/10.1158/2767-9764.crc-23-0149.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pinto EM, Figueiredo BC, Chen W, Galvao HCR, Formiga MN, Mcbv F, et al. XAF1 as a modifier of p53 function and cancer susceptibility. Sci Adv. 2020. https://doi.org/10.1126/sciadv.aba3231.

Article  PubMed  PubMed Central  Google Scholar 

de Vries A, Flores ER, Miranda B, Hsieh HM, van Oostrom CT, Sage J, et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA. 2002;99(5):2948–53. https://doi.org/10.1073/pnas.052713099.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chiang YT, Chien YC, Lin YH, Wu HH, Lee DF, Yu YL. The function of the mutant p53–R175H in cancer. Cancers. 2021. https://doi.org/10.3390/cancers13164088.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif