Nigg EA. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature. 1997;386(6627):779–87. https://doi.org/10.1038/386779a0.
Article CAS PubMed Google Scholar
Macara IG. Transport into and out of the nucleus. Microbiol Mol Biol Rev. 2001;65(4):570–94. https://doi.org/10.1128/MMBR.65.4.570-594.2001.
Article CAS PubMed PubMed Central Google Scholar
A. Mahipal; M. Malafa. Importins and exportins as therapeutic targets in cancer. Pharmacol Ther, 2016; 164: 135–143. https://doi.org/10.1016/j.pharmthera.2016.03.020
Schmidt-Zachmann MS, Dargemont C, Kuhn LC, Nigg EA. Nuclear export of proteins: the role of nuclear retention. Cell. 1993;74(3):493–504. https://doi.org/10.1016/0092-8674(93)80051-f.
Article CAS PubMed Google Scholar
Liu Y, Xu G, Fu H, Li P, Li D, Deng K, Gao W, Shang Y, Wu M. Membrane-bound transcription factor LRRC4 inhibits glioblastoma cell motility. Int J Biol Macromol. 2023;246: 125590. https://doi.org/10.1016/j.ijbiomac.2023.125590.
Article CAS PubMed Google Scholar
Yao H, Wang G, Wang X. Nuclear translocation of proteins and the effect of phosphatidic acid. Plant Signal Behav. 2014;9(12): e977711. https://doi.org/10.4161/15592324.2014.977711.
Article CAS PubMed PubMed Central Google Scholar
Elizalde V, Cordo-Russo RI, Chervo MF, Schillaci R. ErbB-2 nuclear function in breast cancer growth, metastasis and resistance to therapy. Endocr Relat Cancer. 2016;23(12):T243–57. https://doi.org/10.1530/ERC-16-0360.
Article CAS PubMed Google Scholar
Liu Y, Li P, Fan L, Wu M. The nuclear transportation routes of membrane-bound transcription factors. Cell Commun Signal. 2018;16(1):12. https://doi.org/10.1186/s12964-018-0224-3.
Article CAS PubMed PubMed Central Google Scholar
Kumar R, DuMond JF, Khan SH, Thompson EB, He Y, Burg MB, et al. NFAT5, which protects against hypertonicity, is activated by that stress via structuring of its intrinsically disordered domain. Proc Natl Acad Sci U S A. 2020;117(33):20292–7. https://doi.org/10.1073/pnas.1911680117.
Pizzagalli MD, Bensimon A, Superti-Furga G. A guide to plasma membrane solute carrier proteins. FEBS J. 2021;288(9):2784–835. https://doi.org/10.1111/febs.15531.
Article CAS PubMed Google Scholar
Mudumbi KC, Czapiewski R, Ruba A, Junod SL, Li Y, Luo W, Ngo C, Ospina V, Schirmer EC, Yang W. Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Nat Commun. 2020;11(1):2184. https://doi.org/10.1038/s41467-020-16033-x.
Article CAS PubMed PubMed Central Google Scholar
Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, Ruan H. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal. 2021;19(1):60. https://doi.org/10.1186/s12964-021-00741-y.
Article CAS PubMed PubMed Central Google Scholar
Tessier TM, MacNeil KM, Mymryk JS. Piggybacking on Classical Import and Other Non-Classical Mechanisms of Nuclear Import Appear Highly Prevalent within the Human Proteome. Biology (Basel). 2020;9(8). https://doi.org/10.3390/biology9080188.
Lin W, Xu P, Guo Y, Jia Q, Tao T. Nuclear import of Nkx2-2 is mediated by multiple pathways. Biochem Biophys Res Commun. 2017;482(4):1511–6. https://doi.org/10.1016/j.bbrc.2016.12.065.
Article CAS PubMed Google Scholar
Lee BJ, Cansizoglu AE, Suel KE, Louis TH, Zhang Z, Chook YM. Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell. 2006;126(3):543–58. https://doi.org/10.1016/j.cell.2006.05.049.
Article CAS PubMed PubMed Central Google Scholar
Guo L, Fare CM, Shorter J. Therapeutic dissolution of aberrant phases by nuclear-import receptors. Trends Cell Biol. 2019;29(4):308–22. https://doi.org/10.1016/j.tcb.2018.12.004.
Adcox HE, Hatke AL, Andersen SE, Gupta S, Otto NB, Weber MM, Marconi RT, Carlyon JA. Orientia tsutsugamushi Nucleomodulin Ank13 Exploits the RaDAR Nuclear Import Pathway To Modulate Host Cell Transcription. Bio. 2021;12(4):e018162. https://doi.org/10.1128/mBio.01816-21.
Huang Y, Li J, Du W, Li S, Li Y, Qu H, Xv J, Yu L, Zhu R, Wang H. Nuclear translocation of the 4-pass transmembrane protein Tspan8. Cell Res. 2021;31(11):1218–21. https://doi.org/10.1038/s41422-021-00522-9.
Article CAS PubMed PubMed Central Google Scholar
T. Araki.; X. Liu; H. Kameda; Y. Tone; H. Fukuoka; M. Tone; S. Melmed. EGFR Induces E2F1-Mediated Corticotroph Tumorigenesis. J Endocr Soc, 2017. 1(2): 127–143. https://doi.org/10.1210/js.2016-1053
Remon J, Steuer CE, Ramalingam SS, Felip E. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann Oncol. 2018;29(1):20–7. https://doi.org/10.1093/annonc/mdx704.
Eno MS, Brubaker JD, Campbell JE, De Savi C, Guzi TJ, Williams BD, Wilson D, Wilson K, Brooijmans N, Kim J, Ozen A, Perola E, Hsieh J, Brown V, Fetalvero K, Garner A, Zhang Z, Stevison F, Woessner R, Singh J, Timsit Y, Kinkema C, Medendorp C, Lee C, Albayya F, Zalutskaya A, Schalm S, Dineen TA. Discovery of BLU-945, a reversible, potent, and wild-type-sparing next-generation EGFR mutant inhibitor for treatment-resistant non-small-cell lung cancer. J Med Chem. 2022;65(14):9662–77. https://doi.org/10.1021/acs.jmedchem.2c00704.
Article CAS PubMed PubMed Central Google Scholar
Kashima K, Kawauchi H, Tanimura H, Tachibana Y, Chiba T, Torizawa T, Sakamoto H. CH7233163 Overcomes Osimertinib-Resistant EGFR-Del19/T790M/C797S Mutation. Mol Cancer Ther. 2020;19(11):2288–97. https://doi.org/10.1158/1535-7163.MCT-20-0229.
Article CAS PubMed Google Scholar
Kuo HY, Huang YS, Tseng CH, Chen YC, Chang YW, Shih HM, Wu CW. PML represses lung cancer metastasis by suppressing the nuclear EGFR-mediated transcriptional activation of MMP2. Cell Cycle. 2014;13(19):3132–42. https://doi.org/10.4161/15384101.2014.949212.
Article CAS PubMed PubMed Central Google Scholar
Hung LY, Tseng JT, Lee YC, Xia W, Wang YN, Wu ML, Chuang YH, Lai CH, Chang WC. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res. 2008;36(13):4337–51. https://doi.org/10.1093/nar/gkn417.
Article CAS PubMed PubMed Central Google Scholar
Ortega J, Li JY, Lee S, Tong D, Gu L, Li GM. Phosphorylation of PCNA by EGFR inhibits mismatch repair and promotes misincorporation during DNA synthesis. Proc Natl Acad Sci U S A. 2015;112(18):5667–72. https://doi.org/10.1073/pnas.1417711112.
Article CAS PubMed PubMed Central Google Scholar
Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, Ali-Seyed M, Lee DF, Bartholomeusz G, Ou-Yang F, Giri DK, Hung MC. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell. 2004;6(3):251–61. https://doi.org/10.1016/j.ccr.2004.07.012.
Article CAS PubMed Google Scholar
Li Y, Gong L, Liu P, Xiong X, Zhao Y. Nuclear ErbB2 represses DEPTOR transcription to inhibit autophagy in breast cancer cells. Cell Death Dis. 2021;12(4):397. https://doi.org/10.1038/s41419-021-03686-9.
Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17(1):33–48. https://doi.org/10.1038/s41571-019-0268-3.
Article CAS PubMed Google Scholar
Venturutti L, Romero LV, Urtreger AJ, Chervo MF, et al. Stat3 regulates ErbB-2 expression and co-opts ErbB-2 nuclear function to induce miR-21 expression, PDCD4 downregulation and breast cancer metastasis. Oncogene. 2016;35(17):2208–22. https://doi.org/10.1038/onc.2015.281.
Article CAS PubMed Google Scholar
Li LY, Chen H, Hsieh YH, Wang YN, Chu HJ, Chen YH, Chen HY, Chien PJ, Ma HT, Tsai HC, Lai CC, Sher YP, Lien HC, Tsai CH, Hung MC. Nuclear ErbB2 enhances translation and cell growth by activating transcription of ribosomal RNA genes. Cancer Res. 2011;71(12):4269–79. https://doi.org/10.1158/0008-5472.CAN-10-3504.
Comments (0)