Advances in the role of membrane-bound transcription factors in carcinogenesis and therapy

Nigg EA. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature. 1997;386(6627):779–87. https://doi.org/10.1038/386779a0.

Article  CAS  PubMed  Google Scholar 

Macara IG. Transport into and out of the nucleus. Microbiol Mol Biol Rev. 2001;65(4):570–94. https://doi.org/10.1128/MMBR.65.4.570-594.2001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

A. Mahipal; M. Malafa. Importins and exportins as therapeutic targets in cancer. Pharmacol Ther, 2016; 164: 135–143. https://doi.org/10.1016/j.pharmthera.2016.03.020

Schmidt-Zachmann MS, Dargemont C, Kuhn LC, Nigg EA. Nuclear export of proteins: the role of nuclear retention. Cell. 1993;74(3):493–504. https://doi.org/10.1016/0092-8674(93)80051-f.

Article  CAS  PubMed  Google Scholar 

Liu Y, Xu G, Fu H, Li P, Li D, Deng K, Gao W, Shang Y, Wu M. Membrane-bound transcription factor LRRC4 inhibits glioblastoma cell motility. Int J Biol Macromol. 2023;246: 125590. https://doi.org/10.1016/j.ijbiomac.2023.125590.

Article  CAS  PubMed  Google Scholar 

Yao H, Wang G, Wang X. Nuclear translocation of proteins and the effect of phosphatidic acid. Plant Signal Behav. 2014;9(12): e977711. https://doi.org/10.4161/15592324.2014.977711.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elizalde V, Cordo-Russo RI, Chervo MF, Schillaci R. ErbB-2 nuclear function in breast cancer growth, metastasis and resistance to therapy. Endocr Relat Cancer. 2016;23(12):T243–57. https://doi.org/10.1530/ERC-16-0360.

Article  CAS  PubMed  Google Scholar 

Liu Y, Li P, Fan L, Wu M. The nuclear transportation routes of membrane-bound transcription factors. Cell Commun Signal. 2018;16(1):12. https://doi.org/10.1186/s12964-018-0224-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar R, DuMond JF, Khan SH, Thompson EB, He Y, Burg MB, et al. NFAT5, which protects against hypertonicity, is activated by that stress via structuring of its intrinsically disordered domain. Proc Natl Acad Sci U S A. 2020;117(33):20292–7. https://doi.org/10.1073/pnas.1911680117.

Pizzagalli MD, Bensimon A, Superti-Furga G. A guide to plasma membrane solute carrier proteins. FEBS J. 2021;288(9):2784–835. https://doi.org/10.1111/febs.15531.

Article  CAS  PubMed  Google Scholar 

Mudumbi KC, Czapiewski R, Ruba A, Junod SL, Li Y, Luo W, Ngo C, Ospina V, Schirmer EC, Yang W. Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Nat Commun. 2020;11(1):2184. https://doi.org/10.1038/s41467-020-16033-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, Ruan H. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal. 2021;19(1):60. https://doi.org/10.1186/s12964-021-00741-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tessier TM, MacNeil KM, Mymryk JS. Piggybacking on Classical Import and Other Non-Classical Mechanisms of Nuclear Import Appear Highly Prevalent within the Human Proteome. Biology (Basel). 2020;9(8). https://doi.org/10.3390/biology9080188.

Lin W, Xu P, Guo Y, Jia Q, Tao T. Nuclear import of Nkx2-2 is mediated by multiple pathways. Biochem Biophys Res Commun. 2017;482(4):1511–6. https://doi.org/10.1016/j.bbrc.2016.12.065.

Article  CAS  PubMed  Google Scholar 

Lee BJ, Cansizoglu AE, Suel KE, Louis TH, Zhang Z, Chook YM. Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell. 2006;126(3):543–58. https://doi.org/10.1016/j.cell.2006.05.049.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo L, Fare CM, Shorter J. Therapeutic dissolution of aberrant phases by nuclear-import receptors. Trends Cell Biol. 2019;29(4):308–22. https://doi.org/10.1016/j.tcb.2018.12.004.

Adcox HE, Hatke AL, Andersen SE, Gupta S, Otto NB, Weber MM, Marconi RT, Carlyon JA. Orientia tsutsugamushi Nucleomodulin Ank13 Exploits the RaDAR Nuclear Import Pathway To Modulate Host Cell Transcription. Bio. 2021;12(4):e018162. https://doi.org/10.1128/mBio.01816-21.

Article  Google Scholar 

Huang Y, Li J, Du W, Li S, Li Y, Qu H, Xv J, Yu L, Zhu R, Wang H. Nuclear translocation of the 4-pass transmembrane protein Tspan8. Cell Res. 2021;31(11):1218–21. https://doi.org/10.1038/s41422-021-00522-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

T. Araki.; X. Liu; H. Kameda; Y. Tone; H. Fukuoka; M. Tone; S. Melmed. EGFR Induces E2F1-Mediated Corticotroph Tumorigenesis. J Endocr Soc, 2017. 1(2): 127–143. https://doi.org/10.1210/js.2016-1053

Remon J, Steuer CE, Ramalingam SS, Felip E. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann Oncol. 2018;29(1):20–7. https://doi.org/10.1093/annonc/mdx704.

Article  Google Scholar 

Eno MS, Brubaker JD, Campbell JE, De Savi C, Guzi TJ, Williams BD, Wilson D, Wilson K, Brooijmans N, Kim J, Ozen A, Perola E, Hsieh J, Brown V, Fetalvero K, Garner A, Zhang Z, Stevison F, Woessner R, Singh J, Timsit Y, Kinkema C, Medendorp C, Lee C, Albayya F, Zalutskaya A, Schalm S, Dineen TA. Discovery of BLU-945, a reversible, potent, and wild-type-sparing next-generation EGFR mutant inhibitor for treatment-resistant non-small-cell lung cancer. J Med Chem. 2022;65(14):9662–77. https://doi.org/10.1021/acs.jmedchem.2c00704.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kashima K, Kawauchi H, Tanimura H, Tachibana Y, Chiba T, Torizawa T, Sakamoto H. CH7233163 Overcomes Osimertinib-Resistant EGFR-Del19/T790M/C797S Mutation. Mol Cancer Ther. 2020;19(11):2288–97. https://doi.org/10.1158/1535-7163.MCT-20-0229.

Article  CAS  PubMed  Google Scholar 

Kuo HY, Huang YS, Tseng CH, Chen YC, Chang YW, Shih HM, Wu CW. PML represses lung cancer metastasis by suppressing the nuclear EGFR-mediated transcriptional activation of MMP2. Cell Cycle. 2014;13(19):3132–42. https://doi.org/10.4161/15384101.2014.949212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hung LY, Tseng JT, Lee YC, Xia W, Wang YN, Wu ML, Chuang YH, Lai CH, Chang WC. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res. 2008;36(13):4337–51. https://doi.org/10.1093/nar/gkn417.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ortega J, Li JY, Lee S, Tong D, Gu L, Li GM. Phosphorylation of PCNA by EGFR inhibits mismatch repair and promotes misincorporation during DNA synthesis. Proc Natl Acad Sci U S A. 2015;112(18):5667–72. https://doi.org/10.1073/pnas.1417711112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, Ali-Seyed M, Lee DF, Bartholomeusz G, Ou-Yang F, Giri DK, Hung MC. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell. 2004;6(3):251–61. https://doi.org/10.1016/j.ccr.2004.07.012.

Article  CAS  PubMed  Google Scholar 

Li Y, Gong L, Liu P, Xiong X, Zhao Y. Nuclear ErbB2 represses DEPTOR transcription to inhibit autophagy in breast cancer cells. Cell Death Dis. 2021;12(4):397. https://doi.org/10.1038/s41419-021-03686-9.

Article  CAS  Google Scholar 

Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17(1):33–48. https://doi.org/10.1038/s41571-019-0268-3.

Article  CAS  PubMed  Google Scholar 

Venturutti L, Romero LV, Urtreger AJ, Chervo MF, et al. Stat3 regulates ErbB-2 expression and co-opts ErbB-2 nuclear function to induce miR-21 expression, PDCD4 downregulation and breast cancer metastasis. Oncogene. 2016;35(17):2208–22. https://doi.org/10.1038/onc.2015.281.

Article  CAS  PubMed  Google Scholar 

Li LY, Chen H, Hsieh YH, Wang YN, Chu HJ, Chen YH, Chen HY, Chien PJ, Ma HT, Tsai HC, Lai CC, Sher YP, Lien HC, Tsai CH, Hung MC. Nuclear ErbB2 enhances translation and cell growth by activating transcription of ribosomal RNA genes. Cancer Res. 2011;71(12):4269–79. https://doi.org/10.1158/0008-5472.CAN-10-3504.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif