Cefadroxil photodegradation processes sensitized by natural pigments: mechanistic aspects and impact on the antimicrobial function

Patel, N., Khan, M. D., Shahane, S., Rai, D., Chauhan, D., Kant, C., & Chaudhary, V. K. (2020). Emerging pollutants in aquatic environment: source, effect, and challenges in biomonitoring and bioremediation—a review. Pollution, 6(1), 99–113. https://doi.org/10.22059/poll.2019.285116.646

Article  CAS  Google Scholar 

Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059

Article  CAS  PubMed  Google Scholar 

Bottoni, P., Caroli, S., & Caracciolo, A. B. (2010). Pharmaceuticals as priority water contaminants. Toxicological & Environmental Chemistry, 92(3), 549–565. https://doi.org/10.1080/02772241003614320

Article  CAS  Google Scholar 

González-González, R. B., Sharma, P., Singh, S. P., Américo-Pinheiro, J. H. P., Parra-Saldívar, R., Bilal, M., & Iqbal, H. M. (2022). Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices. Science of The Total Environment, 821, 153329. https://doi.org/10.1016/j.scitotenv.2022.153329

Article  CAS  PubMed  Google Scholar 

Phoon, B. L., Ong, C. C., Saheed, M. S. M., Show, P. L., Chang, J. S., Ling, T. C., Lam, S. S., & Juan, J. C. (2020). Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials, 400, 122961. https://doi.org/10.1016/j.jhazmat.2020.122961

Article  PubMed  Google Scholar 

Yang, X., Chen, Z., Zhao, W., Liu, C., Qian, X., Zhang, M., Wei, G., Khan, E., Ng, Y. H., & Ok, Y. S. (2021). Recent advances in photodegradation of antibiotic residues in water. Chemical Engineering Journal, 405, 126806. https://doi.org/10.1016/j.cej.2020.126806

Article  CAS  PubMed  Google Scholar 

de Ilurdoz, M. S., Sadhwani, J. J., & Reboso, J. V. (2022). Antibiotic removal processes from water & wastewater for the protection of the aquatic environment-a review. Journal of Water Process Engineering, 45, 102474. https://doi.org/10.1016/j.jwpe.2021.102474

Article  Google Scholar 

Vialaton, D., & Richard, C. (2002). Phototransformation of aromatic pollutants in solar light: Photolysis versus photosensitized reactions under natural water conditions. Aquatic Sciences, 64, 207–215. https://doi.org/10.1007/s00027-002-8068-7

Article  CAS  Google Scholar 

Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50(10), 1319–1330. https://doi.org/10.1016/S0045-6535(02)00769-5

Article  CAS  PubMed  Google Scholar 

Lin, A. Y. C., & Reinhard, M. (2005). Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry: An International Journal, 24(6), 1303–1309. https://doi.org/10.1897/04-236R.1

Article  CAS  Google Scholar 

Gomis, J., Prevot, A. B., Montoneri, E., Gonzalez, M. C., Amat, A. M., Martire, D. O., Arques, A., & Carlos, L. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236–243. https://doi.org/10.1016/j.cej.2013.09.009

Article  CAS  Google Scholar 

Parsons, S. (2004). Advanced oxidation processes for water and wastewater treatment. IWA Publishing. https://doi.org/10.2166/9781780403076

Book  Google Scholar 

Biondi, M. A., Cacciari, R. D., Sabini, M. C., Spesia, M. B., Biasutti, M. A., Reynoso, E., & Montejano, H. A. (2023). Natural degradation of ceftriaxone promoted by direct UVB light in aqueous media. Mechanistic analysis and cytotoxic effects on a eukaryotic cell line and on bacteria. New Journal of Chemistry, 47(38), 17799–17809. https://doi.org/10.1039/D3NJ03123C

Article  CAS  Google Scholar 

Challis, J. K., Hanson, M. L., Friesen, K. J., & Wong, C. S. (2014). A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: Defining our current understanding and identifying knowledge gaps. Environmental Science: Processes & Impacts, 16(4), 672–696. https://doi.org/10.1039/C3EM00615H

Article  CAS  Google Scholar 

García, N. A., Criado, S. N., & Massad, W. A. (2006). Riboflavin as a visible-light-sensitiser in the aerobic photodegradation of ophthalmic and sympathomimetic drugs. Flavins Photochemistry and Photobiology. https://doi.org/10.1039/9781847555397-00061

Article  Google Scholar 

García, N. A., Pajares, A. M., & Bregliani, M. M. (2016). Singlet oxygen mediated photodegradation of water contaminants. In: Singlet oxygen: applications in biosciences and nanosciences (pp. 447–457). https://doi.org/10.1039/9781782622208-00447

Carlos, L., Martire, D. O., Gonzalez, M. C., Gomis, J., Bernabeu, A., Amat, A. M., & Arques, A. (2012). Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Research, 46(15), 4732–4740. https://doi.org/10.1016/j.watres.2012.06.022

Article  CAS  PubMed  Google Scholar 

Reynoso, E., Spesia, M. B., García, N. A., Biasutti, M. A., & Criado, S. (2015). Riboflavin-sensitized photooxidation of ceftriaxone and cefotaxime. Kinetic study and effect on Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 142, 35–42. https://doi.org/10.1016/j.jphotobiol.2014.11.004

Article  CAS  PubMed  Google Scholar 

Cacciari, R. D., Reynoso, E., Spesia, M. B., Criado, S., & Biasutti, M. A. (2017). Vancomycin-sensitized photooxidation in the presence of the natural pigment vitamin B2: Interaction with excited states and photogenerated ROS. Redox Report, 22(4), 166–175. https://doi.org/10.1080/13510002.2016.1169621

Article  CAS  PubMed  Google Scholar 

Rodríguez-López, L., Cela-Dablanca, R., Núñez-Delgado, A., Álvarez-Rodríguez, E., Fernández-Calviño, D., & Arias-Estévez, M. (2021). Photodegradation of ciprofloxacin, clarithromycin and trimethoprim: Influence of pH and humic acids. Molecules, 26(11), 3080. https://doi.org/10.3390/molecules26113080

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palomares-Reyna, D., Carrera-Crespo, J. E., Sosa-Rodríguez, F. S., Romero-Ibarra, I. C., Castañeda-Galván, A. A., Morales-García, S. S., & Vazquez-Arenas, J. (2022). Degradation of cefadroxil by photoelectrocatalytic ozonation under visible-light irradiation and single processes. Journal of Photochemistry and Photobiology A: Chemistry, 431, 113995. https://doi.org/10.1016/j.jphotochem.2022.113995

Article  CAS  Google Scholar 

Bhamare, V. S. (2022). Mechanistic insight into photocatalytic degradation of antibiotic cefadroxil by 5% barium/zinc oxide nanocomposite during water treatment. Emergent Materials, 5(2), 413–429. https://doi.org/10.1016/S0045-6535(02)00769-5

Article  CAS  Google Scholar 

Sharma, K., Ganigue, R., & Yuan, Z. (2013). pH dynamics in sewers and its modeling. Water Research, 47(16), 6086–6096. https://doi.org/10.1016/j.watres.2013.07.027

Article  CAS  PubMed  Google Scholar 

García, N. A. (1994). New trends in photobiology: singlet-molecular-oxygen-mediated photodegradation of aquatic phenolic pollutants. A kinetic and mechanistic overview. Journal of Photochemistry and Photobiology B Biology, 22(3), 185–196. https://doi.org/10.1016/1011-1344(93)06932-S

Article  Google Scholar 

Darmanyan, A. P., Jenks, W. S., & Jardon, P. (1998). Charge-transfer quenching of singlet oxygen O2(1Δg) by amines and aromatic hydrocarbons. The Journal of Physical Chemistry A, 102(38), 7420–7426. https://doi.org/10.1021/jp982326o

Article  CAS  Google Scholar 

Xie, Z. H., He, C. S., Pei, D. N., Dong, Y., Yang, S. R., Xiong, Z., Zhou, P., Pan, Z.-C., Yao, G., & Lai, B. (2023). Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chemical Engineering Journal, 2, 143778. https://doi.org/10.1016/j.cej.2023.143778

Article  CAS  Google Scholar 

Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC Press.

Google Scholar 

Winterbourn, C. C. (2020). Biological chemistry of superoxide radicals. ChemTexts, 6(1), 7. https://doi.org/10.1007/s40828-019-0101-8

Article  CAS  Google Scholar 

Ghimire, B., Lee, G. J., Mumtaz, S., & Choi, E. H. (2018). Scavenging effects of ascorbic acid and mannitol on hydroxyl radicals generated inside water by an atmospheric pressure plasma jet. AIP Advances, 8(7), 1–11. https://doi.org/10.1063/1.5037125

Article  CAS  Google Scholar 

Fresnadillo, D. G., & Lacombe, S. (2016). Reference photosensitizers for the production of singlet oxygen. Singlet Oxygen: Applications in Biosciences and Nanosciences, 1, 105–143. https://doi.org/10.1039/9781782622208-00105

Article  Google Scholar 

Scully, F. E., Jr., & Hoigné, J. (1987). Rate constants for reactions of singlet oxygen with phenols and other compounds in water. Chemosphere, 16(4), 681–694. https://doi.org/10.1016/0045-6535(87)90004-X

Article  CAS  Google Scholar 

Comments (0)

No login
gif