Patel, N., Khan, M. D., Shahane, S., Rai, D., Chauhan, D., Kant, C., & Chaudhary, V. K. (2020). Emerging pollutants in aquatic environment: source, effect, and challenges in biomonitoring and bioremediation—a review. Pollution, 6(1), 99–113. https://doi.org/10.22059/poll.2019.285116.646
Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059
Article CAS PubMed Google Scholar
Bottoni, P., Caroli, S., & Caracciolo, A. B. (2010). Pharmaceuticals as priority water contaminants. Toxicological & Environmental Chemistry, 92(3), 549–565. https://doi.org/10.1080/02772241003614320
González-González, R. B., Sharma, P., Singh, S. P., Américo-Pinheiro, J. H. P., Parra-Saldívar, R., Bilal, M., & Iqbal, H. M. (2022). Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices. Science of The Total Environment, 821, 153329. https://doi.org/10.1016/j.scitotenv.2022.153329
Article CAS PubMed Google Scholar
Phoon, B. L., Ong, C. C., Saheed, M. S. M., Show, P. L., Chang, J. S., Ling, T. C., Lam, S. S., & Juan, J. C. (2020). Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials, 400, 122961. https://doi.org/10.1016/j.jhazmat.2020.122961
Yang, X., Chen, Z., Zhao, W., Liu, C., Qian, X., Zhang, M., Wei, G., Khan, E., Ng, Y. H., & Ok, Y. S. (2021). Recent advances in photodegradation of antibiotic residues in water. Chemical Engineering Journal, 405, 126806. https://doi.org/10.1016/j.cej.2020.126806
Article CAS PubMed Google Scholar
de Ilurdoz, M. S., Sadhwani, J. J., & Reboso, J. V. (2022). Antibiotic removal processes from water & wastewater for the protection of the aquatic environment-a review. Journal of Water Process Engineering, 45, 102474. https://doi.org/10.1016/j.jwpe.2021.102474
Vialaton, D., & Richard, C. (2002). Phototransformation of aromatic pollutants in solar light: Photolysis versus photosensitized reactions under natural water conditions. Aquatic Sciences, 64, 207–215. https://doi.org/10.1007/s00027-002-8068-7
Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50(10), 1319–1330. https://doi.org/10.1016/S0045-6535(02)00769-5
Article CAS PubMed Google Scholar
Lin, A. Y. C., & Reinhard, M. (2005). Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry: An International Journal, 24(6), 1303–1309. https://doi.org/10.1897/04-236R.1
Gomis, J., Prevot, A. B., Montoneri, E., Gonzalez, M. C., Amat, A. M., Martire, D. O., Arques, A., & Carlos, L. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236–243. https://doi.org/10.1016/j.cej.2013.09.009
Parsons, S. (2004). Advanced oxidation processes for water and wastewater treatment. IWA Publishing. https://doi.org/10.2166/9781780403076
Biondi, M. A., Cacciari, R. D., Sabini, M. C., Spesia, M. B., Biasutti, M. A., Reynoso, E., & Montejano, H. A. (2023). Natural degradation of ceftriaxone promoted by direct UVB light in aqueous media. Mechanistic analysis and cytotoxic effects on a eukaryotic cell line and on bacteria. New Journal of Chemistry, 47(38), 17799–17809. https://doi.org/10.1039/D3NJ03123C
Challis, J. K., Hanson, M. L., Friesen, K. J., & Wong, C. S. (2014). A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: Defining our current understanding and identifying knowledge gaps. Environmental Science: Processes & Impacts, 16(4), 672–696. https://doi.org/10.1039/C3EM00615H
García, N. A., Criado, S. N., & Massad, W. A. (2006). Riboflavin as a visible-light-sensitiser in the aerobic photodegradation of ophthalmic and sympathomimetic drugs. Flavins Photochemistry and Photobiology. https://doi.org/10.1039/9781847555397-00061
García, N. A., Pajares, A. M., & Bregliani, M. M. (2016). Singlet oxygen mediated photodegradation of water contaminants. In: Singlet oxygen: applications in biosciences and nanosciences (pp. 447–457). https://doi.org/10.1039/9781782622208-00447
Carlos, L., Martire, D. O., Gonzalez, M. C., Gomis, J., Bernabeu, A., Amat, A. M., & Arques, A. (2012). Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Research, 46(15), 4732–4740. https://doi.org/10.1016/j.watres.2012.06.022
Article CAS PubMed Google Scholar
Reynoso, E., Spesia, M. B., García, N. A., Biasutti, M. A., & Criado, S. (2015). Riboflavin-sensitized photooxidation of ceftriaxone and cefotaxime. Kinetic study and effect on Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 142, 35–42. https://doi.org/10.1016/j.jphotobiol.2014.11.004
Article CAS PubMed Google Scholar
Cacciari, R. D., Reynoso, E., Spesia, M. B., Criado, S., & Biasutti, M. A. (2017). Vancomycin-sensitized photooxidation in the presence of the natural pigment vitamin B2: Interaction with excited states and photogenerated ROS. Redox Report, 22(4), 166–175. https://doi.org/10.1080/13510002.2016.1169621
Article CAS PubMed Google Scholar
Rodríguez-López, L., Cela-Dablanca, R., Núñez-Delgado, A., Álvarez-Rodríguez, E., Fernández-Calviño, D., & Arias-Estévez, M. (2021). Photodegradation of ciprofloxacin, clarithromycin and trimethoprim: Influence of pH and humic acids. Molecules, 26(11), 3080. https://doi.org/10.3390/molecules26113080
Article CAS PubMed PubMed Central Google Scholar
Palomares-Reyna, D., Carrera-Crespo, J. E., Sosa-Rodríguez, F. S., Romero-Ibarra, I. C., Castañeda-Galván, A. A., Morales-García, S. S., & Vazquez-Arenas, J. (2022). Degradation of cefadroxil by photoelectrocatalytic ozonation under visible-light irradiation and single processes. Journal of Photochemistry and Photobiology A: Chemistry, 431, 113995. https://doi.org/10.1016/j.jphotochem.2022.113995
Bhamare, V. S. (2022). Mechanistic insight into photocatalytic degradation of antibiotic cefadroxil by 5% barium/zinc oxide nanocomposite during water treatment. Emergent Materials, 5(2), 413–429. https://doi.org/10.1016/S0045-6535(02)00769-5
Sharma, K., Ganigue, R., & Yuan, Z. (2013). pH dynamics in sewers and its modeling. Water Research, 47(16), 6086–6096. https://doi.org/10.1016/j.watres.2013.07.027
Article CAS PubMed Google Scholar
García, N. A. (1994). New trends in photobiology: singlet-molecular-oxygen-mediated photodegradation of aquatic phenolic pollutants. A kinetic and mechanistic overview. Journal of Photochemistry and Photobiology B Biology, 22(3), 185–196. https://doi.org/10.1016/1011-1344(93)06932-S
Darmanyan, A. P., Jenks, W. S., & Jardon, P. (1998). Charge-transfer quenching of singlet oxygen O2(1Δg) by amines and aromatic hydrocarbons. The Journal of Physical Chemistry A, 102(38), 7420–7426. https://doi.org/10.1021/jp982326o
Xie, Z. H., He, C. S., Pei, D. N., Dong, Y., Yang, S. R., Xiong, Z., Zhou, P., Pan, Z.-C., Yao, G., & Lai, B. (2023). Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chemical Engineering Journal, 2, 143778. https://doi.org/10.1016/j.cej.2023.143778
Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC Press.
Winterbourn, C. C. (2020). Biological chemistry of superoxide radicals. ChemTexts, 6(1), 7. https://doi.org/10.1007/s40828-019-0101-8
Ghimire, B., Lee, G. J., Mumtaz, S., & Choi, E. H. (2018). Scavenging effects of ascorbic acid and mannitol on hydroxyl radicals generated inside water by an atmospheric pressure plasma jet. AIP Advances, 8(7), 1–11. https://doi.org/10.1063/1.5037125
Fresnadillo, D. G., & Lacombe, S. (2016). Reference photosensitizers for the production of singlet oxygen. Singlet Oxygen: Applications in Biosciences and Nanosciences, 1, 105–143. https://doi.org/10.1039/9781782622208-00105
Scully, F. E., Jr., & Hoigné, J. (1987). Rate constants for reactions of singlet oxygen with phenols and other compounds in water. Chemosphere, 16(4), 681–694. https://doi.org/10.1016/0045-6535(87)90004-X
Comments (0)