Asymmetry in the Perception of Electrical Chirps Presented to Cochlear Implant Listeners

Geurts L, Wouters J (1999) Enhancing the speech envelope of continuous interleaved sampling processors for cochlear implants. J Acoust Soc Am 105(4):2476–2484

Article  CAS  PubMed  Google Scholar 

Heil P (2001) Representation of sound onsets in the auditory system. Audiol Neurotol 6(4):167–172

Article  CAS  Google Scholar 

Suied C, Agus TR, Thorpe SJ, Mesgarani N, Pressnitzer D (2014) Auditory gist: recognition of very short sounds from timbre cues. J Acoust Soc Am 135(3):1380–1391

Article  PubMed  Google Scholar 

Siedenburg K, Schädler MR, Hülsmeier D (2019) Modeling the onset advantage in musical instrument recognition. J Acoust Soc Am 146(6):EL523

Article  PubMed  Google Scholar 

Elberling C, Don M, Cebulla M, Stürzebecher E (2007) Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delay. J Acoust Soc Am 122(5):2772

Article  PubMed  Google Scholar 

Uppenkamp S, Fobel S, Patterson RD (2001) The effects of temporal asymmetry on the detection and perception of short chirps. Hear Res 158(1–2):71–83

Article  CAS  PubMed  Google Scholar 

Wojtczak M, Beim JA, Micheyl C, Oxenham AJ (2012) Perception of across-frequency asynchrony and the role of cochlear delays. J Acoust Soc Am 131(1):363–377

Article  PubMed  PubMed Central  Google Scholar 

McGinley MJ, Liberman MC, Bal R, Oertel D (2012) Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons. J Neurosci 32(27):9301–9311

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dau T, Wegner O, Mellert V, Kollmeier B (2000) Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J Acoust Soc Am 107(3):1530–1540

Article  CAS  PubMed  Google Scholar 

Rupp A, Uppenkamp S, Gutschalk A et al (2002) The representation of peripheral neural activity in the middle-latency evoked field of primary auditory cortex in humans(1). Hear Res 174(1–2):19–31

Article  PubMed  Google Scholar 

Donaldson GS, Kreft HA, Litvak L (2005) Place-pitch discrimination of single-versus dual-electrode stimuli by cochlear implant users. J Acoust Soc Am 118(2):623–626

Article  PubMed  Google Scholar 

Long CJ, Nimmo-Smith I, Baguley DM et al (2005) Optimizing the clinical fit of auditory brain stem implants. Ear Hear 26(3):251–262

Article  PubMed  Google Scholar 

Levitt H, Rabiner LR (1967) Binaural release from masking for speech and gain in intelligibility. J Acoust Soc Am 42(3):601–608

Article  CAS  PubMed  Google Scholar 

Kreft HA, Donaldson GS, Nelson DA (2004) Effects of pulse rate and electrode array design on intensity discrimination in cochlear implant users. J Acoust Soc Am 116(4 Pt 1):2258–2268

Article  PubMed  Google Scholar 

Greenwood DD (1990) A cochlear frequency-position for several species –29 years later. J Acoust Soc Am 87(6):2592–2605

Article  CAS  PubMed  Google Scholar 

Landsberger DM, Svrakic M, Roland JT Jr, Svirsky M (2015) The relationship between insertion angles, default frequency allocations, and spiral ganglion place pitch in cochlear implants. Ear Hear 36(5):e207–e213

Article  PubMed  PubMed Central  Google Scholar 

Mao D, Innes-Brown H, Petoe MA, Wong YT, McKay CM (2018) Cortical auditory evoked potential time-frequency growth functions for fully objective hearing threshold estimation. Hear Res 370:74–83

Article  PubMed  Google Scholar 

Abbas PJ, Brown CJ (2015) Assessment of responses to cochlear implant stimulation at different levels of the auditory pathway. Hear Res 322:67–76

Article  PubMed  Google Scholar 

Visram AS, Innes-Brown H, El-Deredy W, McKay CM (2015) Cortical auditory evoked potentials as an objective measure of behavioral thresholds in cochlear implant users. Hear Res 327:35–42

Article  PubMed  Google Scholar 

Lightfoot G (2016) Summary of the N1–P2 cortical auditory evoked potential to estimate the auditory threshold in adults. Semin Hear 37(01):001–008

Article  Google Scholar 

Brown CJ, Jeon EK, Chiou L-K, Kirby B, Karsten SA, Turner CW, Abbas PJ (2015) Cortical auditory evoked potentials recorded from nucleus hybrid cochlear implant users. Ear Hear 36(6):723–732

Article  PubMed  PubMed Central  Google Scholar 

Wojtczak M, Beim JA, Micheyl C, Oxenham AJ (2013) Perception of across-frequency asynchrony by listeners with cochlear hearing loss. J Assoc Res Otolaryngol 14(4):573–589

Article  PubMed  PubMed Central  Google Scholar 

Wegner O, Dau T (2002) Frequency specificity of chirp-evoked auditory brainstem responses. J Acoust Soc Am 111(3):1318–1329

Article  PubMed  Google Scholar 

Javel E, Shepherd RK (2000) Electrical stimulation of the auditory nerve. Hear Res 140(1–2):45–76

Article  CAS  PubMed  Google Scholar 

Adamson CL, Reid MA, Mo ZL, Bowne-English J, Davis RL (2002) Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. J Comp Neurol 447(4):331–350

Article  CAS  PubMed  Google Scholar 

Middlebrooks JC, Snyder RL (2010) Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity. J Neurosci 30(5):1937–1946

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guiraud J, Gallego S, Arnold L, Boyle P, Truy E, Collet L (2007) Effects of auditory pathway anatomy and deafness characteristics? (1): on electrically evoked auditory brainstem responses. Hear Res 223(1–2):48–60

Article  PubMed  Google Scholar 

Guiraud J, Gallego S, Arnold L, Boyle P, Truy E, Collet L (2007) Effects of auditory pathway anatomy and deafness characteristics? Part 2: on electrically evoked late auditory responses. Hear Res 228(1–2):44–57

Article  PubMed  Google Scholar 

Itoh K, Nejime M, Konoike N, Nakamura K, Nakada T (2019) Evolutionary elongation of the time window of integration in auditory cortex: macaque vs human comparison of the effects of sound duration on auditory evoked potentials. Front Neurosci 13:630

Article  PubMed  PubMed Central  Google Scholar 

Spencer MJ, Grayden DB, Bruce IC, Meffin H, Burkitt AN (2012) An investigation of dendritic delay in octopus cells of the mammalian cochlear nucleus. Front Comput Neurosci 6:83

Article  PubMed  PubMed Central  Google Scholar 

Lu HW, Smith PH, Joris PX (2022) Mammalian octopus cells are direction selective to frequency sweeps by excitatory synaptic sequence detection. Proc Natl Acad Sci USA 119(44):e2203748119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Felix Ii RA, Gourévitch B, Gómez-Álvarez M, Leijon SCM, Saldaña E, Magnusson AK (2017) Octopus cells in the posteroventral cochlear nucleus provide the main excitatory input to the superior paraolivary nucleus. Front Neural Circuits 11:37

Article  PubMed  PubMed Central  Google Scholar 

Kadner A, Kulesza RJ Jr, Berrebi AS (2006) Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. J Neurophysiol 95(3):1499–1508

Article  PubMed 

Comments (0)

No login
gif