Electron Microscopic Mapping of Mitochondrial Morphology in the Cochlear Nerve Fibers

Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75(5):762–777. https://doi.org/10.1016/j.neuron.2012.08.019

Article  CAS  PubMed  Google Scholar 

Hall CN, Klein-Flugge MC, Howarth C, Attwell D (2012) Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 32(26):8940–8951. https://doi.org/10.1523/JNEUROSCI.0026-12.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossi MJ, Pekkurnaz G (2019) Powerhouse of the mind: mitochondrial plasticity at the synapse. Curr Opin Neurobiol 57:149–155. https://doi.org/10.1016/j.conb.2019.02.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065. https://doi.org/10.1126/science.1219855

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flippo KH, Strack S (2017) Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 130(4):671–681. https://doi.org/10.1242/jcs.171017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pekkurnaz G, Wang X (2022) Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 4(7):802–812. https://doi.org/10.1038/s42255-022-00594-w

Article  PubMed  PubMed Central  Google Scholar 

Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23(2):64–71. https://doi.org/10.1016/j.tcb.2012.10.006

Article  CAS  PubMed  Google Scholar 

Fettiplace R (2017) Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea. Compr Physiol 7(4):1197–1227. https://doi.org/10.1002/cphy.c160049

Article  PubMed  PubMed Central  Google Scholar 

Huet A, Batrel C, Wang J, Desmadryl G, Nouvian R, Puel JL, Bourien J (2019) Sound coding in the auditory nerve: from single fiber activity to cochlear mass potentials in gerbils. Neuroscience 407:83–92. https://doi.org/10.1016/j.neuroscience.2018.10.010

Article  CAS  PubMed  Google Scholar 

Moser T, Grabner CP, Schmitz F (2020) Sensory processing at ribbon synapses in the retina and the cochlea. Physiol Rev 100(1):103–144. https://doi.org/10.1152/physrev.00026.2018

Article  CAS  PubMed  Google Scholar 

Shrestha BR, Goodrich LV (2019) Wiring the cochlea for sound perception. In: Kandler K (ed.) The Oxford handbook of the auditory brainstem. Oxford University Press

Voorn RA, Vogl C (2020) Molecular assembly and structural plasticity of sensory ribbon synapses-a presynaptic perspective. Int J Mol Sci. https://doi.org/10.3390/ijms21228758

Article  PubMed  PubMed Central  Google Scholar 

Sun S, Siebald C, Muller U (2021) Subtype maturation of spiral ganglion neurons. Curr Opin Otolaryngol Head Neck Surg 29(5):391–399. https://doi.org/10.1097/MOO.0000000000000748

Article  PubMed  Google Scholar 

Moser T, Karagulyan N, Neef J, Jaime Tobon LM (2023) Diversity matters - extending sound intensity coding by inner hair cells via heterogeneous synapses. EMBO J. https://doi.org/10.15252/embj.2023114587

Article  PubMed  PubMed Central  Google Scholar 

Liberman MC (1980) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3(1):45–63. https://doi.org/10.1016/0378-5955(80)90007-6

Article  CAS  PubMed  Google Scholar 

Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216(4551):1239–1241. https://doi.org/10.1126/science.7079757

Article  CAS  PubMed  Google Scholar 

Moverman DJ, Liberman LD, Kraemer S, Corfas G, Liberman MC (2023) Ultrastructure of noise-induced cochlear synaptopathy. Sci Rep 13(1):19456. https://doi.org/10.1038/s41598-023-46859-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu Y, Liu J, Li B, Wang H, Wang F, Wang S, Wu H, Han H, Hua Y(2024) Spatial patterns of noise-induced inner hair cell ribbon loss in the mouse mid-cochlea. iScience 27(2):108825. https://doi.org/10.1016/j.isci.2024.108825

Yin Y, Liberman LD, Maison SF, Liberman MC (2014) Olivocochlear innervation maintains the normal modiolar-pillar and habenular-cuticular gradients in cochlear synaptic morphology. J Assoc Res Otolaryngol 15(4):571–583. https://doi.org/10.1007/s10162-014-0462-z

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Wang S, Lu Y, Wang H, Wang F, Qiu M, Xie Q, Han H, Hua Y (2022) Aligned organization of synapses and mitochondria in auditory hair cells. Neurosci Bull 38(3):235–248. https://doi.org/10.1007/s12264-021-00801-w

Article  CAS  PubMed  Google Scholar 

Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578. https://doi.org/10.1038/nrm3412

Article  CAS  PubMed  Google Scholar 

Verma M, Lizama BN, Chu CT (2022) Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl Neurodegener 11(1):3. https://doi.org/10.1186/s40035-021-00278-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bottger EC, Schacht J (2013) The mitochondrion: a perpetrator of acquired hearing loss. Hear Res 303:12–19. https://doi.org/10.1016/j.heares.2013.01.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu N, Rutherford MA, Green SH (2020) Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca(2+)-permeable AMPA receptors. Proc Natl Acad Sci USA 117(7):3828–3838. https://doi.org/10.1073/pnas.1914247117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim KX, Payne S, Yang-Hood A, Li SZ, Davis B, Carlquist J, Babak V, Gantz JA, Kallogjeri D, Fitzpatrick JA, Ohlemiller KK et al (2019) Vesicular glutamatergic transmission in noise-induced loss and repair of cochlear ribbon synapses. J Neurosci 39(23):4434–4447. https://doi.org/10.1523/JNEUROSCI.2228-18.2019

Article  PubMed  PubMed Central  Google Scholar 

Puel JL, Ruel J, Gervais d’Aldin C, Pujol R (1998) Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. NeuroReport 9(9):2109–2114. https://doi.org/10.1097/00001756-199806220-00037

Article  CAS  PubMed  Google Scholar 

Hakuba N, Koga K, Gyo K, Usami SI, Tanaka K (2000) Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter GLAST. J Neurosci 20(23):8750–8753. https://doi.org/10.1523/JNEUROSCI.20-23-08750.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 31(3):801–808. https://doi.org/10.1523/JNEUROSCI.3389-10.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rangaraju V, Calloway N, Ryan TA (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell 156(4):825–835. https://doi.org/10.1016/j.cell.2013.12.042

Comments (0)

No login
gif