Artificial intelligence applications for immunology laboratory: image analysis and classification study of IIF photos

Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, et al. Gpt-4 technical report. 2023. arXiv:230308774. http://arxiv.org/abs/2303.08774

Singh SK, Kumar S, Mehra PS. Chat GPT & Google Bard AI: a review. 2023 International Conference on IoT, Communication and Automation Technology (ICICAT). IEEE; 2023. p. 1–6.

Open AI. GPT-4 is OpenAI’s most advanced system, producing safer and more useful responses [Internet]. 2023 [cited 2024 Aug 3]. Available from: https://openai.com/gpt-4

Klochko OV, Gurevych RS, Nagayev VM, Yu Dudorova L, Zuziak TP. Data mining of the healthcare system based on the machine learning model developed in the Microsoft Azure machine learning studio. J Phys Conf Ser. 2022;2288:012006.

Article  Google Scholar 

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60:84–90.

Article  Google Scholar 

Kufel J, Bargieł-Łączek K, Kocot S, Koźlik M, Bartnikowska W, Janik M, et al. What ıs machine learning, artificial neural networks and deep learning?—examples of practical applications in medicine. Diagnostics. 2023;13:2582.

Article  PubMed  PubMed Central  Google Scholar 

Durkee MS, Abraham R, Clark MR, Giger ML. Artificial ıntelligence and cellular segmentation in tissue microscopy ımages. Am J Pathol. 2021;191:1693–701.

Article  PubMed  PubMed Central  Google Scholar 

Kasani PH, Kasani SH, Kim HW, Cho KH, Jang J-W, Yun C-H. HEp-2 cell classification using an ensemble of convolutional neural networks. 2021 International Conference on Information and Communication Technology Convergence (ICTC). IEEE; 2021. p. 196–200.

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith KP, Kirby JE. Image analysis and artificial intelligence in infectious disease diagnostics. Clin Microbiol Infect. 2020;26:1318–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghaderzadeh M, Asadi F, Ramezan Ghorbani N, Almasi S, Taami T. Toward artificial intelligence (AI) applications in the determination of COVID-19 infection severity: considering AI as a disease control strategy in future pandemics. Iran J Blood Cancer. 2023;15:93–111.

Article  Google Scholar 

van Leeuwen KG, de Rooij M, Schalekamp S, van Ginneken B, Rutten MJCM. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr Radiol. 2022;52:2087–93.

Article  PubMed  Google Scholar 

Calisto FM. Human-centered design of personalized intelligent agents in medical imaging diagnosis [Internet]. 2024. Available from: https://doi.org/10.13140/RG.2.2.28353.33126.

Abrantes J, Silva MJ, Meneses J, Oliveira C, Calisto FM, Filice R. External validation of a deep learning model for breast density classification. Vienna, Austria: ESR—European Society of Radiology; 2023.

Google Scholar 

Wahid MdF, Hasan MdJ, Alom MdS, Mahbub S. Performance analysis of machine learning techniques for microscopic bacteria ımage classification. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE; 2019. p. 1–4.

Smith KP, Kang AD, Kirby JE. Automated ınterpretation of blood culture gram stains by use of a deep convolutional neural network. Bourbeau P, editor. J Clin Microbiol. 2018;56:10–1128. https://doi.org/10.1128/JCM.01521-17.

Smith KP, Wang H, Durant TJS, Mathison BA, Sharp SE, Kirby JE, et al. Applications of artificial ıntelligence in clinical microbiology diagnostic testing. Clin Microbiol Newsl. 2020;42:61–70.

Article  Google Scholar 

Sirohi M, Lall M, Yenishetti S, Panat L, Kumar A. Development of a machine learning image segmentation-based algorithm for the determination of the adequacy of Gram-stained sputum smear images. Med J Armed Forces India. 2022;78:339–44.

Article  PubMed  Google Scholar 

Fasihfar Z, Rokhsati H, Sadeghsalehi H, Ghaderzadeh M, Gheisari M. AI-driven malaria diagnosis: developing a robust model for accurate detection and classification of malaria parasites. Iran J Blood Cancer. 2023;15:112–24.

Article  Google Scholar 

Ihtesham IU Islam SDCABEF, EM. Classification of HEp-2 staining patterns in ımmunofluorescence ımages - comparison of support vector machines and subclass discriminant analysis strategies. Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications; 2013. p. 53–61.

von Chamier L, Laine RF, Henriques R. Artificial intelligence for microscopy: what you should know. Biochem Soc Trans. 2019;47:1029–40.

Article  Google Scholar 

Shen J, Zhang CJP, Jiang B, Chen J, Song J, Liu Z, et al. Artificial ıntelligence versus clinicians in disease diagnosis: systematic review. JMIR Med Inform. 2019;7:e10010.

Article  PubMed  PubMed Central  Google Scholar 

Baron JM. Artificial ıntelligence in the clinical laboratory. Clin Lab Med. 2023;43:1–16.

Article  PubMed  Google Scholar 

Bizzaro N, Antico A, Platzgummer S, Tonutti E, Bassetti D, Pesente F, et al. Automated antinuclear immunofluorescence antibody screening: a comparative study of six computer-aided diagnostic systems. Autoimmun Rev. 2014;13:292–8.

Article  CAS  PubMed  Google Scholar 

Tebo AE. Recent approaches to optimize laboratory assessment of antinuclear antibodies. Clin Vaccine Immunol. 2017;24:e00270-e317.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sack U, Knoechner S, Warschkau H, Pigla U, Emmrich F, Kamprad M. Computer-assisted classification of HEp-2 immunofluorescence patterns in autoimmune diagnostics. Autoimmun Rev. 2003;2:298–304.

Article  CAS  PubMed  Google Scholar 

Damoiseaux J, Andrade LEC, Carballo OG, Conrad K, Francescantonio PLC, Fritzler MJ, et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns: the International Consensus on ANA patterns (ICAP) perspective. Ann Rheum Dis. 2019;78:879–89.

Article  CAS  PubMed  Google Scholar 

International Consensus on Antinuclear Antibody (ANA) Patterns (ICAP) [Internet]. Available from: www.anapatterns.org. [cited 2024 May 9].

Egerer K, Roggenbuck D, Hiemann R, Weyer M-G, Büttner T, Radau B, et al. Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence tests. Arthritis Res Ther [Internet]. 2010;12:R40. https://doi.org/10.1186/ar2949.

Article  PubMed  PubMed Central  Google Scholar 

Nanni L, Brahnam S, Ghidoni S, Lumini A. Bioimage classification with handcrafted and learned features. IEEE/ACM Trans Comput Biol Bioinform. 2019;16:874–85.

Article  Google Scholar 

Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31:198–211.

Article  PubMed  PubMed Central  Google Scholar 

MacMath D, Chen M, Khoury P. Artificial ıntelligence: exploring the future of ınnovation in allergy ımmunology. Curr Allergy Asthma Rep. 2023;23:351–62.

Article  PubMed  Google Scholar 

Shamji MH, Ollert M, Adcock IM, Bennett O, Favaro A, Sarama R, et al. EAACI guidelines on environmental science in allergic diseases and asthma – leveraging artificial intelligence and machine learning to develop a causality model in exposomics. Allergy. 2023;78:1742–57.

Article  PubMed  Google Scholar 

Goktas P, Karakaya G, Kalyoncu AF, Damadoglu E. Artificial ıntelligence chatbots in allergy and ımmunology practice: where have we been and where are we going? J Allergy Clin Immunol Pract. 2023;11:2697–700.

Article  PubMed  Google Scholar 

Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput. 2023;14:8459–86.

Article  PubMed  Google Scholar 

Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics. 2017;37:2113–31.

Article  PubMed  Google Scholar 

Sharma S, Engineering BE. Drawing ınsights from COVID-19 ınfected patients with no past medical history using CT scan ımages and machine learning techniques: a study on 200 patients Current Status: Posted Subject Areas. Environ Sci Pollut Res Int. 2020;27:37155–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mustafiz MR, Mohsin K. Assessing Automated Machine Learning service to detect COVID-19 from X-Ray and CT images: A Real-time Smartphone Application case study. 2020. Available from: https://doi.org/10.36227/techrxiv.13022756.v1.

Morais M, Calisto FM, Santiago C, Aleluia C, Nascimento JC. Classification of breast cancer in MRİ with multimodal fusion. 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI). IEEE; 2023. p. 1–4.

Diogo P, Morais M, Calisto FM, Santiago C, Aleluia C, Nascimento JC. Weakly-supervised diagnosis and detection of breast cancer using deep multiple ınstance learning. 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI). IEEE; 2023. p. 1–4.

Rodrigues LF, Naldi MC, Mari JF. Comparing convolutional neural networks and preprocessing techniques for HEp-2 cell classification in immunofluorescence images. Comput Biol Med. 2020;116:103542.

Article  CAS  PubMed  Google Scholar 

Gao Z, Wang L, Zhou L, Zhang J. HEp-2 cell ımage classification with deep convolutional neural networks. IEEE J Biomed Health Inform. 2017;21:416–28.

Article  PubMed  Google Scholar 

Cascio D, Taormina V, Raso G. Deep convolutional neural network for HEp-2 fluorescence ıntensity classification. Appl Sci. 2019;9:408.

Article 

Comments (0)

No login
gif