Demoly P, Adkinson NF, Brockow K, Castells M, Chiriac AM, Greenberger PA, Khan DA, Lang DM, Park HS, Pichler W, Sanchez-Borges M, Shiohara T, Thong BY. International consensus on drug allergy. Allergy. 2014;69(4):420–37. https://doi.org/10.1111/all.12350.
Article PubMed CAS Google Scholar
Kumar M, Duraisamy K, Chow BK. Unlocking the non-IgE-mediated pseudo-allergic reaction puzzle with Mas-related G-protein coupled receptor member X2 (MRGPRX2). Cells. 2021;10(5):1033. https://doi.org/10.3390/cells10051033.
Article PubMed PubMed Central CAS Google Scholar
Farnam K, Chang C, Teuber S, Gershwin ME. Nonallergic drug hypersensitivity reactions. Int Arch Allergy Immunol. 2012;159(4):327–45. https://doi.org/10.1159/000339690.
Article PubMed CAS Google Scholar
Zhang B, Li Q, Shi C, Zhang X. Drug-induced pseudoallergy: a review of the causes and mechanisms. Pharmacology. 2018;101(1–2):104–10. https://doi.org/10.1159/000479878.
Article PubMed CAS Google Scholar
Zou F, Du Q, Zhang Y, Zuo L, Sun Z. Pseudo-allergic reactions induced by Chinese medicine injections: a review. Chin Med. 2023;18(1):149. https://doi.org/10.1186/s13020-023-00855-0.
Article PubMed PubMed Central Google Scholar
Yang F, Guo L, Li Y, Wang G, Wang J, Zhang C, Fang GX, Chen X, Liu L, Yan X, Liu Q, Qu C, Xu Y, Xiao P, Zhu Z, Li Z, Zhou J, Yu X, Gao N, Sun JP. Structure, function and pharmacology of human itch receptor complexes. Nature. 2021;600(7887):164–9. https://doi.org/10.1038/s41586-021-04077-y.
Article PubMed CAS Google Scholar
McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237–41. https://doi.org/10.1038/nature14022.
Article PubMed CAS Google Scholar
Kolkhir P, Pyatilova P, Ashry T, Jiao Q, Abad-Perez AT, Altrichter S, Vera Ayala CE, Church MK, He J, Lohse K, Metz M, Scheffel J, Türk M, Frischbutter S, Maurer M. Mast cells, cortistatin, and its receptor, MRGPRX2, are linked to the pathogenesis of chronic prurigo. J Allergy Clin Immunol. 2022;149(6):1998-2009.e5. https://doi.org/10.1016/j.jaci.2022.02.021.
Article PubMed CAS Google Scholar
Zhang Y, Wang J, Ge S, Zeng Y, Wang N, Wu Y. Roxithromycin inhibits compound 48/80-induced pseudo-allergy via the MrgprX2 pathway both in vitro and in vivo. Cell Immunol. 2020;358:104239. https://doi.org/10.1016/j.cellimm.2020.104239.
Article PubMed CAS Google Scholar
Takamori A, Izawa K, Kaitani A, Ando T, Okamoto Y, Maehara A, Tanabe A, Nagamine M, Yamada H, Uchida S, Uchida K, Isobe M, Hatayama T, Watanabe D, Ando T, Ide T, Matsuzawa M, Maeda K, Nakano N, Tamura N, Ikeda K, Ebihara N, Shimizu T, Ogawa H, Okumura K, Kitaura J. Identification of inhibitory mechanisms in pseudo-allergy involving Mrgprb2/MRGPRX2-mediated mast cell activation. J Allergy Clin Immunol. 2019;143(3):1231-1235.e12. https://doi.org/10.1016/j.jaci.2018.10.034.
Article PubMed CAS Google Scholar
Alkanfari I, Gupta K, Jahan T, Ali H. Naturally occurring missense MRGPRX2 variants display loss of function phenotype for mast cell degranulation in response to substance P, hemokinin-1, human β-defensin-3, and icatibant. J Immunol. 2018;201(2):343–9. https://doi.org/10.4049/jimmunol.1701793.
Article PubMed CAS Google Scholar
Wang Z, Franke K, Bal G, Li Z, Zuberbier T, Babina M. MRGPRX2-mediated degranulation of human skin mast cells requires the operation of Gαi, Gαq, Ca++ channels, ERK1/2 and PI3K—interconnection between early and late signaling. Cells. 2022;11(6):953. https://doi.org/10.3390/cells11060953.
Article PubMed PubMed Central CAS Google Scholar
Zhang F, Hong F, Wang L, Fu R, Qi J, Yu B. MrgprX2 regulates mast cell degranulation through PI3K/AKT and PLCγ signaling in pseudo-allergic reactions. Int Immunopharmacol. 2022;102:108389. https://doi.org/10.1016/j.intimp.2021.108389.
Article PubMed CAS Google Scholar
Cavassin FB, Baú-Carneiro JL, Vilas-Boas RR, Queiroz-Telles F. Sixty years of amphotericin B: an overview of the main antifungal agent used to treat invasive fungal infections. Infect Dis Ther. 2021;10:115–47. https://doi.org/10.1007/s40121-020-00382-7.
Article PubMed PubMed Central Google Scholar
Lemke A, Kiderlen AF, Kayser O. Amphotericin B. Appl Microbiol Biotechnol. 2005;68(2):151–62. https://doi.org/10.1007/s00253-005-1955-9.
Article PubMed CAS Google Scholar
Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new “gold standard.” Clin Infect Dis. 2003;37:415–25. https://doi.org/10.1086/376634.
Article PubMed CAS Google Scholar
Grela E, Zdybicka-Barabas A, Pawlikowska-Pawlega B, Cytrynska M, Wlodarczyk M, Grudzinski W, Luchowski R, Gruszecki WI. Modes of the antibiotic activity of amphotericin B against Candida albicans. Sci Rep. 2019;9(1):17029. https://doi.org/10.1038/s41598-019-53517-3.
Article PubMed PubMed Central CAS Google Scholar
Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother. 2002;49(Suppl 1):7–10. https://doi.org/10.1093/jac/49.suppl_1.7.
Article PubMed CAS Google Scholar
Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223–7. https://doi.org/10.1016/j.riam.2009.06.003.
Grela E, Piet M, Luchowski R, Grudzinski W, Paduch R, Gruszecki WI. Imaging of human cells exposed to an antifungal antibiotic amphotericin B reveals the mechanisms associated with the drug toxicity and cell defence. Sci Rep. 2018;8(1):14067. https://doi.org/10.1038/s41598-018-32301-9.
Article PubMed PubMed Central CAS Google Scholar
Murray HW. Letter: allergic reactions to amphotericin B. N Engl J Med. 1974;290(12):693.
Article PubMed CAS Google Scholar
Sherief SH, Chackupurackal SJ, Sengottuvelu S, Dora M, Manivannan V, Ganesh RM. Amphotericin B induced anaphylactic reaction and electrolyte imbalance: a case report. J Pharm Res Int. 2021;33(59B):735–9. https://doi.org/10.9734/jpri/2021/v33i59B34440.
Amphotericin-B. Reactions Weekly, 2017;1675:29. https://doi.org/10.1007/s40278-017-37797-7
Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 2005;216(2–3):106–21. https://doi.org/10.1016/j.tox.2005.07.023.
Article PubMed CAS Google Scholar
Drewett GP, Copaescu A, DeLuca J, Holmes NE, Trubiano JA. Asystolic cardiac arrest following liposomal amphotericin B infusion: anaphylaxis or compliment activation-related pseudoallergy? Allergy Asthma Clin. Immunol. 2021,29;17(1):80. https://doi.org/10.1186/s13223-021-00582-x
Han S, Lv Y, Kong L, Che D, Liu R, Fu J, Cao J, Wang J, Wang C, He H, Zhang T, Dong X, He L. Use of the relative release index for histamine in LAD2 cells to evaluate the potential anaphylactoid effects of drugs. Sci Rep. 2017;7(1):13714. https://doi.org/10.1038/s41598-017-14224-z.
Article PubMed PubMed Central CAS Google Scholar
Raja N, Naikodi S, Govindarajan A, Palanisamy K. Toluidine blue staining of murine mast cells and quantitation by a novel, automated image analysis method using whole slide skin images. J Histotechnol. 2021;44(4):190–5. https://doi.org/10.1080/01478885.2021.1915934.
Article PubMed CAS Google Scholar
Bischoff S. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol. 2007;7(2):93–104. https://doi.org/10.1038/nri2018.
Comments (0)