Amphotericin B for injection triggers degranulation of human LAD2 mast cells by MRGPRX2 and pseudo-allergic reactions in mice via MRGPRB2 activation

Demoly P, Adkinson NF, Brockow K, Castells M, Chiriac AM, Greenberger PA, Khan DA, Lang DM, Park HS, Pichler W, Sanchez-Borges M, Shiohara T, Thong BY. International consensus on drug allergy. Allergy. 2014;69(4):420–37. https://doi.org/10.1111/all.12350.

Article  PubMed  CAS  Google Scholar 

Kumar M, Duraisamy K, Chow BK. Unlocking the non-IgE-mediated pseudo-allergic reaction puzzle with Mas-related G-protein coupled receptor member X2 (MRGPRX2). Cells. 2021;10(5):1033. https://doi.org/10.3390/cells10051033.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Farnam K, Chang C, Teuber S, Gershwin ME. Nonallergic drug hypersensitivity reactions. Int Arch Allergy Immunol. 2012;159(4):327–45. https://doi.org/10.1159/000339690.

Article  PubMed  CAS  Google Scholar 

Zhang B, Li Q, Shi C, Zhang X. Drug-induced pseudoallergy: a review of the causes and mechanisms. Pharmacology. 2018;101(1–2):104–10. https://doi.org/10.1159/000479878.

Article  PubMed  CAS  Google Scholar 

Zou F, Du Q, Zhang Y, Zuo L, Sun Z. Pseudo-allergic reactions induced by Chinese medicine injections: a review. Chin Med. 2023;18(1):149. https://doi.org/10.1186/s13020-023-00855-0.

Article  PubMed  PubMed Central  Google Scholar 

Yang F, Guo L, Li Y, Wang G, Wang J, Zhang C, Fang GX, Chen X, Liu L, Yan X, Liu Q, Qu C, Xu Y, Xiao P, Zhu Z, Li Z, Zhou J, Yu X, Gao N, Sun JP. Structure, function and pharmacology of human itch receptor complexes. Nature. 2021;600(7887):164–9. https://doi.org/10.1038/s41586-021-04077-y.

Article  PubMed  CAS  Google Scholar 

McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237–41. https://doi.org/10.1038/nature14022.

Article  PubMed  CAS  Google Scholar 

Kolkhir P, Pyatilova P, Ashry T, Jiao Q, Abad-Perez AT, Altrichter S, Vera Ayala CE, Church MK, He J, Lohse K, Metz M, Scheffel J, Türk M, Frischbutter S, Maurer M. Mast cells, cortistatin, and its receptor, MRGPRX2, are linked to the pathogenesis of chronic prurigo. J Allergy Clin Immunol. 2022;149(6):1998-2009.e5. https://doi.org/10.1016/j.jaci.2022.02.021.

Article  PubMed  CAS  Google Scholar 

Zhang Y, Wang J, Ge S, Zeng Y, Wang N, Wu Y. Roxithromycin inhibits compound 48/80-induced pseudo-allergy via the MrgprX2 pathway both in vitro and in vivo. Cell Immunol. 2020;358:104239. https://doi.org/10.1016/j.cellimm.2020.104239.

Article  PubMed  CAS  Google Scholar 

Takamori A, Izawa K, Kaitani A, Ando T, Okamoto Y, Maehara A, Tanabe A, Nagamine M, Yamada H, Uchida S, Uchida K, Isobe M, Hatayama T, Watanabe D, Ando T, Ide T, Matsuzawa M, Maeda K, Nakano N, Tamura N, Ikeda K, Ebihara N, Shimizu T, Ogawa H, Okumura K, Kitaura J. Identification of inhibitory mechanisms in pseudo-allergy involving Mrgprb2/MRGPRX2-mediated mast cell activation. J Allergy Clin Immunol. 2019;143(3):1231-1235.e12. https://doi.org/10.1016/j.jaci.2018.10.034.

Article  PubMed  CAS  Google Scholar 

Alkanfari I, Gupta K, Jahan T, Ali H. Naturally occurring missense MRGPRX2 variants display loss of function phenotype for mast cell degranulation in response to substance P, hemokinin-1, human β-defensin-3, and icatibant. J Immunol. 2018;201(2):343–9. https://doi.org/10.4049/jimmunol.1701793.

Article  PubMed  CAS  Google Scholar 

Wang Z, Franke K, Bal G, Li Z, Zuberbier T, Babina M. MRGPRX2-mediated degranulation of human skin mast cells requires the operation of Gαi, Gαq, Ca++ channels, ERK1/2 and PI3K—interconnection between early and late signaling. Cells. 2022;11(6):953. https://doi.org/10.3390/cells11060953.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang F, Hong F, Wang L, Fu R, Qi J, Yu B. MrgprX2 regulates mast cell degranulation through PI3K/AKT and PLCγ signaling in pseudo-allergic reactions. Int Immunopharmacol. 2022;102:108389. https://doi.org/10.1016/j.intimp.2021.108389.

Article  PubMed  CAS  Google Scholar 

Cavassin FB, Baú-Carneiro JL, Vilas-Boas RR, Queiroz-Telles F. Sixty years of amphotericin B: an overview of the main antifungal agent used to treat invasive fungal infections. Infect Dis Ther. 2021;10:115–47. https://doi.org/10.1007/s40121-020-00382-7.

Article  PubMed  PubMed Central  Google Scholar 

Lemke A, Kiderlen AF, Kayser O. Amphotericin B. Appl Microbiol Biotechnol. 2005;68(2):151–62. https://doi.org/10.1007/s00253-005-1955-9.

Article  PubMed  CAS  Google Scholar 

Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new “gold standard.” Clin Infect Dis. 2003;37:415–25. https://doi.org/10.1086/376634.

Article  PubMed  CAS  Google Scholar 

Grela E, Zdybicka-Barabas A, Pawlikowska-Pawlega B, Cytrynska M, Wlodarczyk M, Grudzinski W, Luchowski R, Gruszecki WI. Modes of the antibiotic activity of amphotericin B against Candida albicans. Sci Rep. 2019;9(1):17029. https://doi.org/10.1038/s41598-019-53517-3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother. 2002;49(Suppl 1):7–10. https://doi.org/10.1093/jac/49.suppl_1.7.

Article  PubMed  CAS  Google Scholar 

Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223–7. https://doi.org/10.1016/j.riam.2009.06.003.

Article  PubMed  Google Scholar 

Grela E, Piet M, Luchowski R, Grudzinski W, Paduch R, Gruszecki WI. Imaging of human cells exposed to an antifungal antibiotic amphotericin B reveals the mechanisms associated with the drug toxicity and cell defence. Sci Rep. 2018;8(1):14067. https://doi.org/10.1038/s41598-018-32301-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Murray HW. Letter: allergic reactions to amphotericin B. N Engl J Med. 1974;290(12):693.

Article  PubMed  CAS  Google Scholar 

Sherief SH, Chackupurackal SJ, Sengottuvelu S, Dora M, Manivannan V, Ganesh RM. Amphotericin B induced anaphylactic reaction and electrolyte imbalance: a case report. J Pharm Res Int. 2021;33(59B):735–9. https://doi.org/10.9734/jpri/2021/v33i59B34440.

Article  Google Scholar 

Amphotericin-B. Reactions Weekly, 2017;1675:29. https://doi.org/10.1007/s40278-017-37797-7

Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 2005;216(2–3):106–21. https://doi.org/10.1016/j.tox.2005.07.023.

Article  PubMed  CAS  Google Scholar 

Drewett GP, Copaescu A, DeLuca J, Holmes NE, Trubiano JA. Asystolic cardiac arrest following liposomal amphotericin B infusion: anaphylaxis or compliment activation-related pseudoallergy? Allergy Asthma Clin. Immunol. 2021,29;17(1):80. https://doi.org/10.1186/s13223-021-00582-x

Han S, Lv Y, Kong L, Che D, Liu R, Fu J, Cao J, Wang J, Wang C, He H, Zhang T, Dong X, He L. Use of the relative release index for histamine in LAD2 cells to evaluate the potential anaphylactoid effects of drugs. Sci Rep. 2017;7(1):13714. https://doi.org/10.1038/s41598-017-14224-z.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Raja N, Naikodi S, Govindarajan A, Palanisamy K. Toluidine blue staining of murine mast cells and quantitation by a novel, automated image analysis method using whole slide skin images. J Histotechnol. 2021;44(4):190–5. https://doi.org/10.1080/01478885.2021.1915934.

Article  PubMed  CAS  Google Scholar 

Bischoff S. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol. 2007;7(2):93–104. https://doi.org/10.1038/nri2018.

Article  PubMed  CAS 

Comments (0)

No login
gif