NF-κB in biology and targeted therapy: new insights and translational implications

Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716 (1986).

Article  CAS  PubMed  Google Scholar 

Singh, H., Sen, R., Baltimore, D. & Sharp, P. A. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319, 154–158 (1986).

Article  ADS  CAS  PubMed  Google Scholar 

Sen, R. & Baltimore, D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47, 921–928 (1986).

Article  CAS  PubMed  Google Scholar 

Lenardo, M., Pierce, J. W. & Baltimore, D. Protein-binding sites in Ig gene enhancers determine transcriptional activity and inducibility. Science 236, 1573–1577 (1987).

Article  ADS  CAS  PubMed  Google Scholar 

Lenardo, M. J., Fan, C. M., Maniatis, T. & Baltimore, D. The involvement of NF-kappa B in beta-interferon gene regulation reveals its role as widely inducible mediator of signal transduction. Cell 57, 287–294 (1989).

Article  CAS  PubMed  Google Scholar 

Ahmad, S. et al. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: micromanaging by not so small non-coding RNAs. Semin. Cancer Biol. 85, 155–163 (2022).

Article  CAS  PubMed  Google Scholar 

Blanchett, S., Boal-Carvalho, I., Layzell, S. & Seddon, B. NF-κB and extrinsic cell death pathways - entwined do-or-die decisions for T cells. Trends Immunol. 42, 76–88 (2021).

Article  CAS  PubMed  Google Scholar 

Ghosh, S. & Hayden, M. S. New regulators of NF-κB in inflammation. Nat. Rev. Immunol. 8, 837–848 (2008).

Article  CAS  PubMed  Google Scholar 

Gulei, D. et al. The tumor suppressor functions of ubiquitin ligase KPC1: from cell-cycle control to NF-κB regulator. Cancer Res 83, 1762–1767 (2023).

Article  CAS  PubMed  Google Scholar 

Israël, A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol. 2, a000158 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Henkel, T. et al. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 68, 1121–1133 (1992).

Article  CAS  PubMed  Google Scholar 

Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitinproteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

Article  CAS  PubMed  Google Scholar 

Hayden, M. S. & Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26, 203–234 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson, J. E., Phillips, R. J., Erdjument-Bromage, H., Tempst, P. & Ghosh, S. IκB-β regulates the persistent response in a biphasic activation of NF-κB. Cell 80, 573–582 (1995).

Article  CAS  PubMed  Google Scholar 

Rao, P. et al. IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. Nature 466, 1115–1119 (2010).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Inoue, J., Kerr, L. D., Kakizuka, A. & Verma, I. M. I kappa B gamma, a 70 kd protein identical to the C-terminal half of p110 NF-kappa B: a new member of the I kappa B family. Cell 68, 1109–1120 (1992).

Article  CAS  PubMed  Google Scholar 

Baeuerle, P. A. & Baltimore, D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242, 540–546 (1988).

Article  ADS  CAS  PubMed  Google Scholar 

Zabel, U. & Baeuerle, P. A. Purified human IκB can rapidly dissociate the complex of the NF-κB transcription factor with its cognate DNA. Cell 61, 255–265 (1990).

Article  CAS  PubMed  Google Scholar 

Sun, S. C., Ganchi, P. A., Ballard, D. W. & Greene, W. C. NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).

Article  ADS  CAS  PubMed  Google Scholar 

Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. & Siebenlist, U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1488 (1995).

Article  ADS  CAS  PubMed  Google Scholar 

Dechend, R. et al. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene 18, 3316–3323 (1999).

Article  CAS  PubMed  Google Scholar 

Nolan, G. P. et al. The bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner. Mol. Cell Biol. 13, 3557–3566 (1993).

CAS  PubMed  PubMed Central  Google Scholar 

Gehrke, N. et al. Hepatocyte Bcl-3 protects from death-receptor mediated apoptosis and subsequent acute liver failure. Cell Death Dis. 13, 510 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaiswal, H. et al. The NF-κB regulator Bcl-3 restricts terminal differentiation and promotes memory cell formation of CD8 + T cells during viral infection. PLoS Pathog. 17, e1009249 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang, W. et al. Bcl-3 inhibits lupus-like phenotypes in BL6/lpr mice. Eur. J. Immunol. 51, 197–205 (2021).

Article  CAS  PubMed  Google Scholar 

Bours, V. et al. The oncoprotein Bcl-3 directly transactivates through kappa B motifs via association with DNA-binding p50B homodimers. Cell 72, 729–739 (1993).

Article  CAS  PubMed  Google Scholar 

Westerheide, S. D., Mayo, M. W., Anest, V., Hanson, J. L. & Baldwin, A. S. The putative oncoprotein Bcl-3 induces cyclin D1 to stimulate G(1) transition. Mol. Cell Biol. 21, 8428–8436 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watanabe, N., Iwamura, T., Shinoda, T. & Fujita, T. Regulation of NFKB1 proteins by the candidate oncoprotein BCL-3: generation of NF-kappaB homodimers from the cytoplasmic pool of p50-p105 and nuclear translocation. EMBO J. 16, 3609–3620 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, L.-F. & Greene, W. C. Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell Biol. 5, 392–401 (2004).

Article  CAS  PubMed  Google Scholar 

Ha, H., Han, D. & Choi, Y. TRAF-Mediated TNFR-Family Signaling. Curr. Protoc. Immunol. 87, 11.9D.1–11.9D.19 (2009).

Article  Google Scholar 

Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T. & Toriumi, W. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. 274, 30353–30356 (1999).

Article  CAS  PubMed  Google Scholar 

Sakurai, H. et al. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J. Biol. Chem. 278, 36916–36923 (2003).

Article  CAS  PubMed  Google Scholar 

Yu, H., Lin, L., Zhang, Z., Zhang, H. & Hu, H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct. Target Ther. 5, 209 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

May, M. J., Marienfeld, R. B. & Ghosh, S. Characterization of the Ikappa B-kinase NEMO binding domain. J. Biol. Chem. 277, 45992–46000 (2002).

Article  CAS  PubMed  Google Scholar 

Marienfeld, R. B., Palkowitsch, L. & Ghosh, S. Dimerization of the I kappa B kinase-binding domain of NEMO is required for tumor necrosis factor alpha-induced NF-kappa B activity. Mol. Cell Biol. 26, 9209–9219 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang,

Comments (0)

No login
gif