Angelova PR, Horrocks MH, Klenerman D et al (2015) Lipid peroxidation is essential for α-synuclein-induced cell death. Journal of neurochemistry 133:582–589
Article CAS PubMed PubMed Central Google Scholar
Bingol B, Sheng M (2016) Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biology and Medicine 100:210–222
Article CAS PubMed Google Scholar
Cassarino DS, Fall CP, Swerdlow RH et al (1997) Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim Biophys Acta (BBA) Mol Basis Dis 1362:77–89
Cossarizza A, Baccaranicontri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochemical and biophysical research communications 197:40–45
Article CAS PubMed Google Scholar
Darzynkiewicz Z, Bedner E, Smolewski P (2001) Flow cytometry in analysis of cell cycle and apoptosis. Elsevier, pp 179–193
Egensperger R, Kösel S, Schnopp NM et al (1997) Association of the mitochondrial tRNA(A4336G) mutation with Alzheimer’s and Parkinson’s diseases. Neuropathol Appl Neurobiol 23:315–321
Article CAS PubMed Google Scholar
Gandhi S, Wood-Kaczmar A, Yao Z et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33:627–638. https://doi.org/10.1016/j.molcel.2009.02.013
Article CAS PubMed PubMed Central Google Scholar
Garone C, Pietra A, Nesci S (2022) From the structural and (Dys) function of ATP synthase to deficiency in age-related diseases. Life (Basel) 12. https://doi.org/10.3390/life12030401
Hällberg BM, Larsson N-G (2014) Making proteins in the powerhouse. Cell Metab 20:226–240. https://doi.org/10.1016/j.cmet.2014.07.001
Article CAS PubMed Google Scholar
Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300. https://doi.org/10.1093/geronj/11.3.298
Article CAS PubMed Google Scholar
Helley MP, Pinnell J, Sportelli C, Tieu K (2017) Mitochondria: a common target for genetic mutations and environmental toxicants in Parkinson’s disease. Front Genet 8:177
Article PubMed PubMed Central Google Scholar
Huang H, Chen J, Lu H et al (2017) Iron-induced generation of mitochondrial ROS depends on AMPK activity. Biometals 30:623–628. https://doi.org/10.1007/s10534-017-0023-0
Article CAS PubMed Google Scholar
Hutchin T, Cortopassi G (1995) A mitochondrial DNA clone is associated with increased risk for Alzheimer disease. Proc Natl Acad Sci 92:6892–6895
Article CAS PubMed PubMed Central Google Scholar
Je G, Kim Y-S (2017) Mitochondrial ROS-mediated post-transcriptional regulation of α-synuclein through miR-7 and miR-153. Neurosci Lett 661:132–136. https://doi.org/10.1016/j.neulet.2017.09.065
Article CAS PubMed Google Scholar
Jiang H, Liu L, Sun DL et al (2016) Interaction between passive smoking and folic acid supplement during pregnancy on autism spectrum disorder behaviors in children aged 3 years. Zhonghua Liu Xing Bing Xue Za Zhi 37:940–944. https://doi.org/10.3760/cma.j.issn.0254-6450.2016.07.007
Article CAS PubMed Google Scholar
Junn E, Mouradian MM (2002) Human α-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci Lett 320:146–150
Article CAS PubMed Google Scholar
Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18:44–51
Article CAS PubMed Google Scholar
Ludtmann MH, Angelova PR, Horrocks MH et al (2018) α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 9:2293
Article PubMed PubMed Central Google Scholar
Ma KY, Fokkens MR, Reggiori F, Mari M, Verbeek DS (2021) Parkinson’s disease–associated VPS35 mutant reduces mitochondrial membrane potential and impairs PINK1/Parkin-mediated mitophagy. Transl Neurodegener 10(1):1–7
Magee R, Londin E, Rigoutsos I (2019) TRNA-derived fragments as sex-dependent circulating candidate biomarkers for Parkinson’s disease. Parkinsonism Relat Disord 65:203–209. https://doi.org/10.1016/j.parkreldis.2019.05.035
Mahalaxmi I, Subramaniam MD, Gopalakrishnan AV, Vellingiri B (2021) Dysfunction in mitochondrial electron transport chain complex I, pyruvate dehydrogenase activity, and mutations in ND1 and ND4 gene in autism spectrum disorder subjects from Tamil Nadu Population, India. Mol Neurobiol 58:5303–5311. https://doi.org/10.1007/s12035-021-02492-w
Article CAS PubMed Google Scholar
Mayr-Wohlfart U, Paulus C, Henneberg A, Rödel G (1996) Mitochondrial DNA mutations in multiple sclerosis patients with severe optic involvement. Acta Neurol Scand 94:167–171. https://doi.org/10.1111/j.1600-0404.1996.tb07048.x
Article CAS PubMed Google Scholar
Mayr-Wohlfart U, Rödel G, Henneberg A (1997) Mitochondrial tRNA (Gln) and tRNA(Thr) gene variants in Parkinson’s disease. Eur J Med Res 2:111–113
Nicholls DG (2004) Mitochondrial membrane potential and aging. Aging Cell 3:35–40. https://doi.org/10.1111/j.1474-9728.2003.00079.x
Article CAS PubMed Google Scholar
Paldor I, Madrer N, Vaknine Treidel S et al (2023) Cerebrospinal fluid and blood profiles of transfer RNA fragments show age, sex and Parkinson’s disease-related changes. J Neurochem 164:671–83
Article CAS PubMed Google Scholar
Panel M, Ghaleh B, Morin D (2018) Mitochondria and ageing: a role for the mitochondrial transition pore? Ageing Cell 17:e12793
Qadri R, Goyal V, Behari M et al (2021) Alteration of mitochondrial function in oxidative stress in parkinsonian neurodegeneration: a cross-sectional study. Ann Indian Acad Neurol 24:506
Article PubMed PubMed Central Google Scholar
Qadri R, Namdeo M, Behari M et al (2018) Alterations in mitochondrial membrane potential in peripheral blood mononuclear cells in Parkinson’s disease: potential for a novel biomarker. Restor Neurol Neurosci 36:719–727. https://doi.org/10.3233/RNN-180852
Article CAS PubMed Google Scholar
Ricci J-E, Muñoz-Pinedo C, Fitzgerald P et al (2004) Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117:773–786
Article CAS PubMed Google Scholar
Richter G, Sonnenschein A, Grünewald T et al (2002) Novel mitochondrial DNA mutations in Parkinson’s disease. J Neural Transm 109:721–729
Article CAS PubMed Google Scholar
Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6 (3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82
Article CAS PubMed Google Scholar
Shoffner JM, Brown MD, Torroni A et al (1993) Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics 17:171–184. https://doi.org/10.1006/geno.1993.1299
Article CAS PubMed Google Scholar
Simon DK, Mayeux R, Marder K et al (2000) Mitochondrial DNA mutations in complex I and tRNA genes in Parkinson’s disease. Neurology 54:703–709. https://doi.org/10.1212/wnl.54.3.703
Article CAS PubMed Google Scholar
Suski JM, Lebiedzinska M, Bonora M et al (2012) Relation between mitochondrial membrane potential and ROS formation. Mitochondrial bioenergetics: methods and protocols 183–205
Vellingiri B, Suriyanarayanan A, Selvaraj P et al (2022a) Role of heavy metals (copper (Cu), arsenic (As), cadmium (Cd), iron (Fe) and lithium (Li)) induced neurotoxicity. Chemosphere 134625
Vellingiri B, Chandrasekhar M, Sabari SS et al (2022b) Neurotoxicity of pesticides–a link to neurodegeneration. Ecotoxicol Environ Saf 243:113972
Article CAS PubMed Google Scholar
Vellingiri B, Suriyanarayanan A, Abraham KS et al (2022c) Influence of heavy metals in Parkinson’s disease: an overview. J Neurolo 1–14
Vellingiri B, Kiruthika B, Mahalaxmi I et al (2023) Role of telomeres and telomerase in Parkinson’s disease - a new theranostics? Adv Biol 2300097
Venkatesan D, Iyer M, Narayanasamy A et al (2022) Genotypic-phenotypic analysis, metabolic profiling and clinical correlations in Parkinson’s disease patients from Tamil Nadu population, India. J Mol Neurosci 1–14
Venkatesan D, Iyer M, Wilson R et al (2021) The association between multiple risk factors, clinical correlations and molecular insights in Parkinson’s disease patients from Tamil Nadu population, India. Neurosci Lett 755:135903
Article CAS PubMed Google Scholar
Wallace DC (1994) Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci 91:8739–8746
Article CAS PubMed PubMed Central Google Scholar
Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407.
Comments (0)