Thornton, L.C., Frick, P.J., Crapanzano, A.M., et al., The incremental utility of callous-unemotional traits and conduct problems in predicting aggression and bullying in a community sample of boys and girls, Psychol. Assess., 2013, vol. 25, no. 2, pp. 366—378. https://doi.org/10.1037/a0031153
Lindenfors, P. and Tullberg, B.S., Evolutionary aspects of aggression the importance of sexual selection, Adv. Genet., 2011, vol. 75, pp. 7—22. https://doi.org/10.1016/B978-0-12-380858-5.00009-5
Liljegren, M., Naasan, G., Temlett, J., et al., Criminal behavior in frontotemporal dementia and Alzheimer disease., JAMA Neurol., 2015, vol. 72, no. 3, pp. 295—300. https://doi.org/10.1001/jamaneurol.2014.3781
Article PubMed PubMed Central Google Scholar
Cupaioli, F.A., Zucca, F.A., Caporale, C., et al., The neurobiology of human aggressive behavior: neuroimaging, genetic, and neurochemical aspects, Prog. Neuropsychopharm. Biol. Psychiatry, 2021, vol. 106, p. 110059. https://doi.org/10.1016/j.pnpbp.2020.110059
González-Giraldo, Y., Camargo, A., López-León, S., et al., A functional SNP in MIR124-1, a brain expressed miRNA gene, is associated with aggressiveness in a Colombian sample, Eur. Psychiatry, 2015, vol. 30, no. 4, pp. 499—503. https://doi.org/10.1016/j.eurpsy.2015.03.002
Provençal, N., Booij, L., and Tremblay, R.E., The developmental origins of chronic physical aggression: biological pathways triggered by early life adversity, J. Exp. Biol., 2015, vol. 218, no. 1, pp. 123—133. https://doi.org/10.1242/jeb.111401
Shorter, J., Couch, C., Huang, W., et al., Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 27, pp. E3555—E3563. https://doi.org/10.1073/pnas.1510104112
Article CAS PubMed PubMed Central Google Scholar
Groothuis, T.G.G. and Carere, C., Avian personalities: characterization and epigenesis, Neurosci. Biobehav. Rev., 2005, vol. 29, no. 1, pp. 137—150. https://doi.org/10.1016/j.neubiorev.2004.06.010
Redina, O., Babenko, V., Smagin, D., et al., Gene expression changes in the ventral tegmental area of male mice with alternative social behavior experience in chronic agonistic interactions, Int. J. Mol. Sci., 2020, vol. 21, no. 18, p. 6599. https://doi.org/10.3390/ijms21186599
Article CAS PubMed PubMed Central Google Scholar
Gardner, A. and Úbeda, F., The meaning of intragenomic conflict, Nat. Ecol. Evol., 2017, vol. 1, no. 12, pp. 1807—1815. https://doi.org/10.1038/s41559-017-0354-9
Bresnahan, S.T., Lee, E., Clark, L., et al., Examining parent-of-origin effects on transcription and RNA methylation in mediating aggressive behavior in honey bees (Apis mellifera), BMC Genomics, 2023, vol. 24, no. 1, p. 315. https://doi.org/10.1186/s12864-023-09411-4
Article CAS PubMed PubMed Central Google Scholar
Audira, G., Sarasamma, S., Chen, J.-R., et al., Zebrafish mutants carrying leptin a (Lepa) gene deficiency display obesity, anxiety, less aggression and fear, and circadian rhythm and color preference dysregulation, Int. J. Mol. Sci., 2018, vol. 19, no. 12, p. 4038. https://doi.org/10.3390/ijms19124038
Article PubMed PubMed Central Google Scholar
Fairbanks, L.A., Way, B.M., Breidenthal, S.E., et al., Maternal and offspring dopamine D4 receptor genotypes interact to influence juvenile impulsivity in vervet monkeys, Psychol. Sci., 2012, vol. 23, no. 10, pp. 1099—1104. https://doi.org/10.1177/0956797612444905
Saetre, P., Strandberg, E., Sundgren, P.-E., et al., The genetic contribution to canine personality, Genes, Brain Behav., 2006, vol. 5, no. 3, pp. 240—248. https://doi.org/10.1111/j.1601-183X.2005.00155.x
Article CAS PubMed Google Scholar
Tuvblad, C. and Baker, L.A., Human aggression across the lifespan: genetic propensities and environmental moderators, Adv. Genet., 2011, vol. 75, pp. 171—214. https://doi.org/10.1016/B978-0-12-380858-5.00007-1
Porsch, R.M., Middeldorp, C.M., Cherny, S.S., et al., Longitudinal heritability of childhood aggression, Am. J. Med. Genet., Part B, 2016, vol. 171, no. 5, pp. 697—707. https://doi.org/10.1002/ajmg.b.32420
Ferguson, C.J., Genetic contributions to antisocial personality and behavior: a meta-analytic review from an evolutionary perspective, J. Soc. Psychol., 2010, vol. 150, no. 2, pp. 160—180. https://doi.org/10.1080/00224540903366503
Hudziak, J.J., van Beijsterveldt, C.E.M., Bartels, M., et al., Individual differences in aggression: genetic analyses by age, gender, and informant in 3-, 7-, and 10‑year-old Dutch twins, Behav. Genet., 2003, vol. 33, no. 5, pp. 575—589. https://doi.org/10.1023/a:1025782918793
Article CAS PubMed Google Scholar
Hirata, Y., Zai, C.C., Nowrouzi, B., et al., Study of the catechol-o-methyltransferase (COMT) gene with high aggression in children, Aggressive Behav., 2012, vol. 39, no. 1, pp. 45—51. https://doi.org/10.1002/ab.21448
Gerra, G., Garofano, L., Pellegrini, C., et al., Allelic association of a dopamine transporter gene polymorphism with antisocial behaviour in heroin-dependent patients, Addict. Biol., 2005, vol. 10, no. 3, pp. 275—281. https://doi.org/10.1080/13556210500223769
Article CAS PubMed Google Scholar
Fresan, A., Camarena, B., Apiquian, R., et al., Association study of MAO-A and DRD4 genes in schizophrenic patients with aggressive behavior, Neuropsychobiology, 2007, vol. 55, nos. 3—4, pp. 171—175. https://doi.org/10.1159/000106477
Article CAS PubMed Google Scholar
Miczek, K.A., de Almeida, R.M.M., Kravitz, E.A., et al., Neurobiology of escalated aggression and violence, J. Neurosci., 2007, vol. 27, no. 44, pp. 11803—11806. https://doi.org/10.1523/JNEUROSCI.3500-07.2007
Article CAS PubMed PubMed Central Google Scholar
Craig, D., Hart, D.J., Carson, R., et al., Allelic variation at the A218C tryptophan hydroxylase polymorphism influences agitation and aggression in Alzheimer’s disease, Neurosci. Lett., 2004, vol. 363, no. 3, pp. 199—202. https://doi.org/10.1016/j.neulet.2004.02.054
Article CAS PubMed Google Scholar
Perez-Rodriguez, M.M., Weinstein, S., New, A.S., et al., Tryptophan-hydroxylase 2 haplotype association with borderline personality disorder and aggression in a sample of patients with personality disorders and healthy controls, J. Psychiatr. Res., 2010, vol. 44, no. 15, pp. 1075—1081. https://doi.org/10.1016/j.jpsychires.2010.03.014
Article PubMed PubMed Central Google Scholar
Jensen, K.P., Covault, J., Conner, T.S., et al., A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors, Mol. Psychiatry, 2009, vol. 14, no. 4, pp. 381—389. https://doi.org/10.1038/mp.2008.15
Article CAS PubMed Google Scholar
Banlaki, Z., Elek, Z., Nanasi, T., et al., Polymorphism in the serotonin receptor 2a (Htr2a) gene as possible predisposal factor for aggressive traits, PLoS One, 2015, vol. 10, no. 2, p. e117792. https://doi.org/10.1371/journal.pone.0117792
Reif, A., Rösler, M., Freitag, C.M., et al., Nature and nurture predispose to violent behavior: serotonergic genes and adverse childhood environment, Neuropsychopharmacology, 2007, vol. 32, no. 11, pp. 2375—2383. https://doi.org/10.1038/sj.npp.1301359
Article CAS PubMed Google Scholar
Kiive, E., Laas, K., Vaht, M., et al., Stressful life events increase aggression and alcohol use in young carriers of the GABRA2 rs279826/rs279858 A-allele, Eur. Neuropsychopharmacol., 2017, vol. 27, no. 8, pp. 816—827. https://doi.org/10.1016/j.euroneuro.2017.02.003
Article CAS PubMed Google Scholar
Malik, A.I., Zai, C.C., Abu, Z., et al., The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression, Genes, Brain, Behav., 2012, vol. 11, no. 5, pp. 545—551. https://doi.org/10.1111/j.1601-183X.2012.00776.x
Comments (0)