Ahn JH, Cho H, Kim J-H, Kim SH, Ham J-S, Park I, Suh SH, Hong SP, Song J-H, Hong Y-K, Jeong Y, Park S-H, Koh GY (2019) Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572(7767):62–66. https://doi.org/10.1038/s41586-019-1419-5
Article PubMed CAS Google Scholar
Alemán-Ruiz C, Wang W, Dingledine R, Varvel NH (2023) Pharmacological inhibition of the inflammatory receptor CCR2 relieves the early deleterious consequences of status epilepticus. Sci Rep 13(1):5651. https://doi.org/10.1038/s41598-023-32752-9
Article PubMed PubMed Central CAS Google Scholar
Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, Mathivet T, Chilov D, Li Z, Koppinen T, Park J-H, Fang S, Aspelund A, Saarma M, Eichmann A, Thomas J-L, Alitalo K (2017) Development and plasticity of meningeal lymphatic vessels. J Exp Med 214(12):3645–3667. https://doi.org/10.1084/jem.20170391
Article PubMed PubMed Central CAS Google Scholar
Bateman GA, Bateman AR (2024) The dilated veins surrounding the cord in multiple sclerosis suggest elevated pressure and obstruction of the glymphatic system. Neuroimage 286:120517. https://doi.org/10.1016/j.neuroimage.2024.120517
Bearoff F, Dhavale D, Kotzbauer P, Kortagere S (2023) Aggregated alpha-synuclein transcriptionally activates pro-inflammatory canonical and non-canonical NF-κB signaling pathways in peripheral monocytic cells. Mol Immunol 154:1–10. https://doi.org/10.1016/j.molimm.2022.12.006
Article PubMed CAS Google Scholar
Bennett HC, Zhang Q, Wu Y, Manjila SB, Chon U, Shin D, Vanselow DJ, Pi H-J, Drew PJ, Kim Y (2024) Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. Nat Commun 15(1):6398. https://doi.org/10.1038/s41467-024-50559-8
Article PubMed PubMed Central CAS Google Scholar
Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Xia Z, Liu C, Klotz L, Stauffer U, Baranzini SE, Kümpfel T, Hohlfeld R, Krishnamoorthy G, Wekerle H (2017) Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 114(40):10719–10724. https://doi.org/10.1073/pnas.1711233114
Article PubMed PubMed Central CAS Google Scholar
Bhatt S, Nagappa AN, Patil CR (2020) Role of oxidative stress in depression. Drug Discov Today 25(7):1270–1276. https://doi.org/10.1016/j.drudis.2020.05.001
Article PubMed CAS Google Scholar
Boisserand LSB, Geraldo LH, Bouchart J, El Kamouh M-R, Lee S, Sanganahalli BG, Spajer M, Zhang S, Lee S, Parent M, Xue Y, Skarica M, Yin X, Guegan J, Boyé K, Saceanu Leser F, Jacob L, Poulet M, Li M et al (2024) VEGF-C prophylaxis favors lymphatic drainage and modulates neuroinflammation in a stroke model. J Exp Med 221(4):e20221983. https://doi.org/10.1084/jem.20221983
Article PubMed PubMed Central CAS Google Scholar
Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, Ennerfelt HE, Shapiro D, Nguyen BH, Frost EL, Lammert CR, Kipnis J, Lukens JR (2020) Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun 11(1):4524. https://doi.org/10.1038/s41467-020-18113-4
Article PubMed PubMed Central CAS Google Scholar
Boxerman JL, Hawash K, Bali B, Clarke T, Rogg J, Pal DK (2007) Is rolandic epilepsy associated with abnormal findings on cranial MRI? Epilepsy Res 75(2–3):180–185. https://doi.org/10.1016/j.eplepsyres.2007.06.001
Article PubMed PubMed Central Google Scholar
Braun M, Sevao M, Keil SA, Gino E, Wang MX, Lee J, Haveliwala MA, Klein E, Agarwal S, Pedersen T, Rhodes CH, Jansson D, Cook D, Peskind E, Perl DP, Piantino J, Schindler AG, Iliff JJ (2024) Macroscopic changes in aquaporin-4 underlie blast traumatic brain injury-related impairment in glymphatic function. Brain 147(6):2214–2229. https://doi.org/10.1093/brain/awae065
Article PubMed PubMed Central Google Scholar
Brosnan CF, Raine CS (2013) The astrocyte in multiple sclerosis revisited. Glia 61(4):453–465. https://doi.org/10.1002/glia.22443
Carotenuto A, Cacciaguerra L, Pagani E, Preziosa P, Filippi M, Rocca MA (2022) Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability. Brain 145(8):2785–2795. https://doi.org/10.1093/brain/awab454
Cekanaviciute E, Pröbstel AK, Thomann A, Runia TF, Casaccia P, Katz Sand I, Crabtree E, Singh S, Morrissey J, Barba P, Gomez R, Knight R, Mazmanian S, Graves J, Cree BAC, Zamvil SS, Baranzini SE (2018) Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria. mSystems 3(6):e00083-18. https://doi.org/10.1128/mSystems.00083-18
Article PubMed PubMed Central Google Scholar
Cervellati C, Trentini A, Pecorelli A, Valacchi G (2020) Inflammation in neurological disorders: the thin boundary between brain and periphery. Antioxid Redox Signal 33(3):191–210. https://doi.org/10.1089/ars.2020.8076
Article PubMed CAS Google Scholar
Chen J-H, Yang L-K, Chen L, Wang Y-H, Wu Y, Jiang B-J, Zhu J, Li P-P (2016) Atorvastatin ameliorates early brain injury after subarachnoid hemorrhage via inhibition of AQP4 expression in rabbits. Int J Mol Med 37(4):1059–1066. https://doi.org/10.3892/ijmm.2016.2506
Article PubMed CAS Google Scholar
Chi Y, Fan Y, He L, Liu W, Wen X, Zhou S, Wang X, Zhang C, Kong H, Sonoda L, Tripathi P, Li CJ, Yu MS, Su C, Hu G (2011) Novel role of aquaporin-4 in CD4+ CD25+ T regulatory cell development and severity of Parkinson’s disease: AQP4 in Treg cell development and severity of PD. Aging Cell 10(3):368–382. https://doi.org/10.1111/j.1474-9726.2011.00677.x
Article PubMed CAS Google Scholar
Chong PLH, Garic D, Shen MD, Lundgaard I, Schwichtenberg AJ (2022) Sleep, cerebrospinal fluid, and the glymphatic system: a systematic review. Sleep Med Rev 61:101572. https://doi.org/10.1016/j.smrv.2021.101572
Article PubMed CAS Google Scholar
Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science (New York NY) 330(6000):55–60. https://doi.org/10.1126/science.1193270
Cruz-Sanabria F, Carmassi C, Bruno S, Bazzani A, Carli M, Scarselli M, Faraguna U (2023) Melatonin as a chronobiotic with sleep-promoting properties. Curr Neuropharmacol 21(4):951–987. https://doi.org/10.2174/1570159X20666220217152617
Article PubMed PubMed Central CAS Google Scholar
Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol-Renal Physiol 240(4):F319–F328. https://doi.org/10.1152/ajprenal.1981.240.4.F319
Dai W, Yang M, Xia P, Xiao C, Huang S, Zhang Z, Cheng X, Li W, Jin J, Zhang J, Wu B, Zhang Y, Wu P, Lin Y, Wu W, Zhao H, Zhang Y, Lin W-J, Ye X (2022) A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. Nat Commun 13(1):4825. https://doi.org/10.1038/s41467-022-32556-x
Article PubMed PubMed Central CAS Google Scholar
Daini E, Secco V, Liao W, Zoli M, Vilella A (2021) A regional and cellular analysis of the early intracellular and extracellular accumulation of Aβ in the brain of 5XFAD mice. Neurosci Lett 754:135869. https://doi.org/10.1016/j.neulet.2021.135869
Article PubMed CAS Google Scholar
Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, Viar KE, Powell RD, Baker W, Dabhi N, Bai R, Cao R, Hu S, Rich SS, Munson JM et al (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560(7717):185–191. https://doi.org/10.1038/s41586-018-0368-8
Article PubMed PubMed Central CAS Google Scholar
Da Mesquita S, Papadopoulos Z, Dykstra T, Brase L, Farias FG, Wall M, Jiang H, Kodira CD, de Lima KA, Herz J, Louveau A, Goldman DH, Salvador AF, Onengut-Gumuscu S, Farber E, Dabhi N, Kennedy T, Milam MG, Baker W et al (2021) Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature 593(7858):255–260. https://doi.org/10.1038/s41586-021-03489-0
Comments (0)