Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21(3):187–222
Tumeh PC, Alavi A, Houseni M, Greenfield A, Chryssikos T, Newberg A, Torigian DA, Moonis G (2007) Structural and functional imaging correlates for age-related changes in the brain. Seminars in nuclear medicine. Elsevier, pp 69–87
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217
Article PubMed PubMed Central Google Scholar
Bijsterbosch J (2019) How old is your brain? Nat Neurosci 22(10):1611–1612
Article CAS PubMed Google Scholar
Cheng J, Liu Z, Guan H, Wu Z, Zhu H, Jiang J, Wen W, Tao D, Liu T (2021) Brain age estimation from MRI using cascade networks with ranking loss. IEEE Trans Med Imaging 40(12):3400–3412
Zhang Y, Xie R, Beheshti I, Liu X, Zheng G, Wang Y, Zhang Z, Zheng W, Yao Z, Hu B (2024) Improving brain age prediction with anatomical feature attention-enhanced 3d-CNN. Comput Biol Med 169:107873
He S, Grant PE, Ou Y (2022) Global-local transformer for brain age estimation. IEEE Trans Med Imaging 41(1):213–224
Beheshti I, Maikusa N, Matsuda H (2018) The association between “brain-age score”(BAS) and traditional neuropsychological screening tools in Alzheimer’s disease. Brain Behav 8(8):e01020
Article PubMed PubMed Central Google Scholar
Varzandian A, Razo MAS, Sanders MR, Atmakuru A, Di Fatta G (2021) Classification-biased apparent brain age for the prediction of Alzheimer’s disease. Front Neurosci 15:673120
Article PubMed PubMed Central Google Scholar
Sajedi H, Pardakhti N (2019) Age prediction based on brain MRI image: a survey. J Med Syst 43(8):279
Logothetis NKJN (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878
Article CAS PubMed Google Scholar
Hu D, Zhang H, Wu Z, Wang F, Wang L, Smith JK, Lin W, Li G, Shen D (2020) Disentangled-multimodal adversarial autoencoder: application to infant age prediction with incomplete multimodal neuroimages. IEEE Trans Med Imaging 39(12):4137–4149
Article PubMed PubMed Central Google Scholar
Cai H, Gao Y, Liu M (2023) Graph transformer geometric learning of brain networks using multimodal MR images for brain age estimation. IEEE Trans Med Imaging 42(2):456–466
Bammer R, Skare S, Newbould R, Liu C, Thijs V, Ropele S, Clayton DB, Krueger G, Moseley ME, Glover GH (2005) Foundations of advanced magnetic resonance imaging. NeuroRx 2(2):167–196
Article PubMed PubMed Central Google Scholar
Tanveer M, Ganaie M, Beheshti I, Goel T, Ahmad N, Lai K-T, Huang K, Zhang Y-D, Del Ser J, Lin C-T (2023) Deep learning for brain age estimation: a systematic review. Inf Fusion 96:130–143
Wood DA, Kafiabadi S, Al Busaidi A, Guilhem E, Montvila A, Lynch J, Townend M, Agarwal S, Mazumder A, Barker GJ (2022) Accurate brain-age models for routine clinical MRI examinations. Neuroimage 249:118871
Peng H, Gong W, Beckmann CF, Vedaldi A, Smith SM (2021) Accurate brain age prediction with lightweight deep neural networks. Med Image Anal 68:101871
Poloni KM, Ferrari RJ, Initiative AsDN (2022) A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer’s diagnosis. Expert Syst Appl 195:116622
Pina O, Cumplido-Mayoral I, Cacciaglia R, González-de-Echávarri JM, Gispert JD, Vilaplana V (2022) Structural networks for brain age prediction. International conference on medical imaging with deep learning. PMLR, pp 944–960
Franke K, Ziegler G, Klöppel S, Gaser C, AsDN I (2010) Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50(3):883–892
Cole JH, Franke K (2017) Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci 40(12):681–690
Article CAS PubMed Google Scholar
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219
Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45(1 Suppl):S173–S186
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–790
Andersson JL, Jenkinson M, Smith S (2007) Non-linear registration, aka spatial normalisation FMRIB technical report TR07JA2. FMRIB Anal Group Univ Oxford 2(1):1–22
Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155
Article PubMed PubMed Central Google Scholar
Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD, Montana G (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163:115–124
Cole JH (2020) Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors. Neurobiol Aging 92:34–42
Article PubMed PubMed Central Google Scholar
Jónsson BA, Bjornsdottir G, Thorgeirsson T, Ellingsen LM, Walters GB, Gudbjartsson D, Stefansson H, Stefansson K, Ulfarsson M (2019) Brain age prediction using deep learning uncovers associated sequence variants. Nat Commun 10(1):5409
Article PubMed PubMed Central Google Scholar
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR, pp 2261–2269
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR, pp 770–778
Hu J, Shen L, Sun G (2018). Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141.
Hou Q, Zhou D, Feng J (2021) Coordinate attention for efficient mobile network design. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. CVPR, pp 13708–13717
Hafkemeijer A, Altmann-Schneider I, de Craen AJ, Slagboom PE, van der Grond J, Rombouts SA (2014) Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults. Aging Cell 13(6):1068–1074
Article CAS PubMed PubMed Central Google Scholar
Fu Y, Huang Y, Zhang Z, Dong S, Xue L, Niu M, Li Y, Shi Z, Wang Y, Zhang H, Tian M, Zhuo C (2023) Otfpf: optimal transport based feature pyramid fusion network for brain age estimation. Inf Fusion 100:101931
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I 2017. Attention is all you need. In: Proceedings of the advances in neural information processing systems.
Li Y, Zhang X, Nie J, Zhang G, Fang R, Xu X, Wu Z, Hu D, Wang L, Zhang H, Lin W, Li G (2022) Brain connectivity based graph convolutional networks and its application to infant age prediction. IEEE Trans Med Imaging 41(10):2764–2776
Article PubMed PubMed Central Google Scholar
Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361
Comments (0)