Deng DM, Hoogenkamp MA, Exterkate RA, Jiang LM, van der Sluis LW, Ten Cate JM et al (2009) Influence of Streptococcus mutans on Enterococcus faecalis biofilm formation. J Endod 35(9):1249–1252
Wang X, Wang L, Fekrazad R, Zhang L, Jiang X, He G (2023) Polyphenolic natural products as photosensitizers for antimicrobial photodynamic therapy: recent advances and future prospects. Front Immunol 14:1275859
Article PubMed PubMed Central Google Scholar
Polat E, Kang K (2021) Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 9(6):584
Article PubMed PubMed Central Google Scholar
Farah N, Chin VK, Chong PP, Lim WF, Lim CW, Basir R et al (2022) Riboflavin as a promising antimicrobial agent? A multi-perspective review. Curr Res Microb Sci 3:100111
PubMed PubMed Central Google Scholar
Adamczak A, Ożarowski M, Karpiński TM (2020) Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals 13(7):153
Article PubMed PubMed Central Google Scholar
Saraiva BB, Sestito JMB, Bezerra RAD, de Oliveira GLM, da Silva Júnior RC, Machado RRB et al (2024) Reduction of Staphylococcus aureus in vitro and in milk by photodynamic inactivation using riboflavin and curcumin as photosensitizers: cell damage and effects on product quality. Journal of Photochemistry and Photobiology A: Chemistry 446:115120
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel ID, Matczyszyn K (2023) The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 52(5):1697–1722
Masson-Meyers DS, Bumah VV, Castel C, Castel D, Enwemeka CS (2020) Pulsed 450 Nm blue light significantly inactivates Propionibacterium acnes more than continuous wave blue light. J Photochem Photobiol B 202:111719
Bumah VV, Masson-Meyers DS, Enwemeka CS (2020) Pulsed 450 nm blue light suppresses MRSA and Propionibacterium acnes in planktonic cultures and bacterial biofilms. J Photochem Photobiol B 202:111702
Cieplik F, Späth A, Leibl C, Gollmer A, Regensburger J, Tabenski L et al (2014) Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clin Oral Invest 18:1763–1769
Pileggi G, Wataha JC, Girard M, Grad I, Schrenzel J, Lange N et al (2013) Blue light-mediated inactivation of Enterococcus faecalis in vitro. Photodiagn Photodyn Ther 10(2):134–140
Biener G, Masson-Meyers DS, Bumah VV, Hussey G, Stoneman MR, Enwemeka CS et al (2017) Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential. J Photochem Photobiol B 170:118–124
Algorri JF, López-Higuera JM, Rodríguez-Cobo L, Cobo A (2023) Advanced light source technologies for photodynamic therapy of skin cancer lesions. Pharmaceutics 15(8):2075
Article PubMed PubMed Central Google Scholar
Assuncao E, Williams S (2013) Comparison of continuous wave and pulsed wave laser welding effects. Opt Lasers Eng 51(6):674–680
Huang S, Lin S, Qin H, Jiang H, Liu M (2023) The parameters affecting antimicrobial efficiency of antimicrobial blue light therapy: a review and prospect. Biomedicines 11(4):1197
Article PubMed PubMed Central Google Scholar
Barbora A, Bohar O, Sivan AA, Magory E, Nause A, Minnes R (2021) Higher pulse frequency of near-infrared laser irradiation increases penetration depth for novel biomedical applications. PLoS ONE 16(1):e0245350
Article PubMed PubMed Central Google Scholar
Haney EF, Trimble MJ, Hancock RE (2021) Microtiter plate assays to assess antibiofilm activity against bacteria. Nat Protoc 16(5):2615–2632
Dufour D, Leung V, Lévesque CM (2010) Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Top 22(1):2–16
Li Y, Sun G, Xie J, Xiao S, Lin C (2023) Antimicrobial photodynamic therapy against oral biofilm: influencing factors, mechanisms, and combined actions with other strategies. Front Microbiol 14:1192955
Article PubMed PubMed Central Google Scholar
Sueoka K, Chikama T, Shinji K, Kiuchi Y (2024) Effectiveness of laser pulsed irradiation for antimicrobial photodynamic therapy. Lasers Med Sci 39(1):151
Article PubMed PubMed Central Google Scholar
Yuzhakova DV, Shirmanova MV, Klimenko VV, Lukina MM, Gavrina AI, Komarova AD et al (2021) PDT with genetically encoded photosensitizer minisog on a tumor spheroid model: a comparative study of continuous-wave and pulsed irradiation. Biochimica et Biophysica Acta (BBA) 1865(12):129978
Kramer B, Muranyi P (2014) Effect of pulsed light on structural and physiological properties of L Isteria Innocua and E scherichia coli. J Appl Microbiol 116(3):596–611
Zhu Y, Li C, Cui H, Lin L (2019) Antimicrobial mechanism of pulsed light for the control of Escherichia coli O157: H7 and its application in carrot juice. Food Control 106:106751
Klimenko VV, Knyazev NA, Moiseenko FV, Rusanov AA, Bogdanov AA, Dubina MV (2016) Pulse mode of laser photodynamic treatment induced cell apoptosis. Photodiagn Photodyn Ther 13:101–107
Kawauchi S, Morimoto Y, Sato S, Arai T, Seguchi K, Asanuma H et al (2004) Differences between cytotoxicity in photodynamic therapy using a pulsed laser and a continuous wave laser: study of oxygen consumption and photobleaching. Lasers Med Sci 18:179–183
Gillespie JB, Maclean M, Given MJ, Wilson MP, Judd MD, Timoshkin IV et al (2017) Efficacy of pulsed 405-nm light-emitting diodes for antimicrobial photodynamic inactivation: effects of intensity, frequency, and duty cycle. Photomed Laser Surg 35(3):150–156
Article PubMed PubMed Central Google Scholar
Elagin V, Budruev I, Antonyan A, Bureev P, Ignatova N, Streltsova O et al (eds) (2023) Enhancement of the efficacy of photodynamic therapy against uropathogenic gram-negative bacteria species. MDPI, Photonics
de Sousa NTA, Santos MF, Gomes RC, Brandino HE, Martinez R, de Jesus Guirro RR (2015) Blue laser inhibits bacterial growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Photomed Laser Surg 33(5):278–282
Comments (0)