Bending the boundaries: the many facets of endophilin-As from membrane dynamics to disease

Simunovic M, Evergren E, Callan-Jones A, Bassereau P (2019) Curving cells inside and out: roles of BAR domain proteins in membrane shaping and its cellular implications. Annu Rev Cell Dev Biol 35:111–129. https://doi.org/10.1146/annurev-cellbio-100617

Article  PubMed  CAS  Google Scholar 

Masuda M, Mochizuki N (2010) Structural characteristics of BAR domain superfamily to sculpt the membrane. Semin Cell Dev Biol 21:391–398. https://doi.org/10.1016/j.semcdb.2010.01.010

Article  PubMed  CAS  Google Scholar 

Kjaerulff O, Brodin L, Jung A (2011) The structure and function of endophilin proteins. Cell Biochem Biophys 60:137–154. https://doi.org/10.1007/s12013-010-9137-5

Article  PubMed  CAS  Google Scholar 

Simunovic M, Evergren E, Golushko I et al (2016) How curvature-generating proteins build scaffolds on membrane nanotubes. Proc Natl Acad Sci U S A 113:11226–11231. https://doi.org/10.1073/pnas.1606943113

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mim C, Unger VM (2012) Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 37:526–533. https://doi.org/10.1016/j.tibs.2012.09.001

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jao CC, Hegde BG, Gallop JL et al (2010) Roles of amphipathic helices and the Bin/Amphiphysin/Rvs (BAR) domain of endophilin in membrane curvature generation. J Biol Chem 285:20164–20170. https://doi.org/10.1074/jbc.M110.127811

Article  PubMed  PubMed Central  CAS  Google Scholar 

Masuda M, Takeda S, Sone M et al (2006) Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J 25:2889–2897. https://doi.org/10.1038/sj.emboj.7601176

Article  PubMed  PubMed Central  CAS  Google Scholar 

Weissenhorn W (2005) Crystal structure of the endophilin-A1 BAR domain. J Mol Biol 351:653–661. https://doi.org/10.1016/j.jmb.2005.06.013

Article  PubMed  CAS  Google Scholar 

Aryal CM, Bui NN, Khadka NK et al (2020) The helix 0 of endophilin modifies membrane material properties and induces local curvature. Biochim Biophys Acta Biomembr 1862:183397. https://doi.org/10.1016/j.bbamem.2020.183397

Article  PubMed  CAS  Google Scholar 

Chen Z, Zhu C, Kuo CJ et al (2016) The N-terminal amphipathic helix of endophilin does not contribute to its molecular curvature generation capacity. J Am Chem Soc 138:14616–14622. https://doi.org/10.1021/jacs.6b06820

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gallop JL, Jao CC, Kent HM et al (2006) Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25:2898–2910. https://doi.org/10.1038/sj.emboj.7601174

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ambroso MR, Hegde BG, Langen R (2014) Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation. Proc Natl Acad Sci USA 111:6982–6987. https://doi.org/10.1073/pnas.1402233111

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mim C, Cui H, Gawronski-Salerno JA et al (2012) Structural basis of membrane bending by the N-BAR protein endophilin. Cell 149:137–145. https://doi.org/10.1016/j.cell.2012.01.048

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schmidt A, Wolde M, Thiele C et al (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401:133–141. https://doi.org/10.1038/43613

Article  PubMed  CAS  Google Scholar 

Gallop JL, Butler PJG, McMahon HT (2005) Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 438:675–678. https://doi.org/10.1038/nature04136

Article  PubMed  CAS  Google Scholar 

Loll PJ, Swain E, Chen Y et al (2008) Structure of the SH3 domain of rat endophilin A2. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:243–246. https://doi.org/10.1107/S1744309108007574

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao YG, Yan XZ, Song AX et al (2006) Structural insights into the specific binding of huntingtin proline-rich region with the SH3 and WW domains. Structure 14:1755–1765. https://doi.org/10.1016/j.str.2006.09.014

Article  PubMed  CAS  Google Scholar 

Verstreken P, Koh T-W, Schulze KL et al (2003) Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40:733–748. https://doi.org/10.1016/S0896-6273(03)00644-5

Article  PubMed  CAS  Google Scholar 

Ringstad N, Nemoto Y, De Camilli P (1997) The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci USA 94:8569–8574. https://doi.org/10.1073/pnas.94.16.8569

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sundborger A, Soderblom C, Vorontsova O et al (2011) An endophilin-dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling. J Cell Sci 124:133–143. https://doi.org/10.1242/jcs.072686

Article  PubMed  CAS  Google Scholar 

Otsuki M, Itoh T, Takenawa T (2003) Neural Wiskott-Aldrich syndrome protein is recruited to rafts and associates with endophilin A in response to epidermal growth factor. J Biol Chem 278:6461–6469. https://doi.org/10.1074/jbc.M207433200

Article  PubMed  CAS  Google Scholar 

Sim PF, Chek MF, Nguyen NTH et al (2024) The SH3 binding site in front of the WH1 domain contributes to the membrane binding of the BAR domain protein endophilin A2. J Biochem 175:57–67. https://doi.org/10.1093/jb/mvad065

Article  CAS  Google Scholar 

Sugiura H, Iwata K, Matsuoka M et al (2004) Inhibitory role of endophilin 3 in receptor-mediated endocytosis. J Biol Chem 279:23343–23348. https://doi.org/10.1074/JBC.M312607200

Article  PubMed  CAS  Google Scholar 

Giachino C, Lantelme E, Lanzetti L et al (1997) A novel SH3-containing human gene family preferentially expressed in the central nervous system. Genomics 41:427–434. https://doi.org/10.1006/geno.1997.4645

Article  PubMed  CAS  Google Scholar 

So CC, Sham MH, Chew SL et al (2000) Expression and protein-binding studies of the EEN gene family, new interacting partners for dynamin, synaptojanin and huntingtin proteins. Biochem J 348:447–458

Article  PubMed  PubMed Central  CAS  Google Scholar 

Milosevic I, Giovedi S, Lou X et al (2011) Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 72:587–601. https://doi.org/10.1016/j.neuron.2011.08.029

Article  PubMed  PubMed Central  CAS  Google Scholar 

Perera RM, Zoncu R, Lucast L et al (2006) Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci U S A 103:19332–19337. https://doi.org/10.1073/PNAS.0609795104

Article  PubMed  PubMed Central 

Comments (0)

No login
gif