Abbas EY, Ezzat MI, Ramadan NM, Eladl A, Hamed WHE, Abdel-Aziz MM et al (2023) Characterization and anti-aging effects of Opuntia ficus-indica (L.) Miller extracts in a D-galactose-induced skin aging model. Food Funct 14:3107–3125. https://doi.org/10.1039/d2fo03834j
Article CAS PubMed Google Scholar
Al-Msiedeen AM, Jamhour RMAQ, Al-Soud AS, Al-Zeidaneen FK, Alnaanah SA, Alrawashdeh AI, Abualreish MJA, Alawaideh S, Alhesan JSA (2024) Powdered Opuntia ficus-indica as an effective adsorbent for the removal of phenol and 2-nitrophenol from wastewater: experimental and theoretical studies. Desalin Water Treat 2024:100859. https://doi.org/10.1016/j.dwt.2024.100859
Andreu L, Nuncio-Jáuregui N, Carbonell-Barrachina ÁA, Legua P, Hernández F (2018) Antioxidant properties and chemical characterization of Spanish Opuntia ficus-indica Mill. cladodes and fruits. J Sci Food Agric 98:1566–1573. https://doi.org/10.1002/jsfa.8628
Article CAS PubMed Google Scholar
Ansary TM, Hossain MR, Kamiya K, Komine M, Ohtsuki M (2021) Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int J Mol Sci 22:3974. https://doi.org/10.3390/ijms22083974
Article CAS PubMed PubMed Central Google Scholar
Atiya A, Majrashi TA, Begum MY, Abdul Qadir SF, Alqahtani AS, Ali Alosman AS et al (2023) Influence of solvent selection and extraction methods on the determination of polyphenols, antioxidant, lipoxygenase and tyrosinase inhibition activities of Opuntia ficus-indica fruits peel and pulp collected from the Kingdom of Saudi Arabia (KSA). Nat Prod Res 37:514–521. https://doi.org/10.1080/14786419.2021.1983571
Article CAS PubMed Google Scholar
Ávila-Hernández A, Simá E, Ché-Pan M (2023) Research and development of green roofs and green walls in Mexico: a review. Sci Total Environ 856:158978. https://doi.org/10.1016/j.scitotenv.2022.158978
Article CAS PubMed Google Scholar
Benayad Z, Martinez-Villaluenga C, Frias J, Gomez-Condoves C, Es-Safi NE (2014) Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficus-indica flowers obtained by different extraction methods. Ind Crops Prod 62:412–420. https://doi.org/10.1016/j.indcrop.2014.08.046
Bravo K, Alzate F, Osorio E (2016) Fruits of selected wild and cultivated Andean plants as sources of potential compounds with antioxidant and anti-aging activity. Ind Crops Prod 85:341–352. https://doi.org/10.1016/j.indcrop.2015.12.074
Bravo K, Duque L, Ferreres F, Moreno DA, Osorio E (2017) Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. J Photochem Photobiol B Biol 168:78–88. https://doi.org/10.1016/j.jphotobiol.2017.01.023
Bravo K, Quintero C, Agudelo C, García S, Bríñez A, Osorio E (2020) CosIng database analysis and experimental studies to promote Latin American plant biodiversity for cosmetic use. Ind Crops Prod 144:112007. https://doi.org/10.1016/j.indcrop.2019.112007
Chen J, Zhu D, Feng B, Cai X, Chen J (2024) Exploring the inhibitory activity and mechanism of cetylpyridine chloride: Unveiling a promising class of tyrosinase inhibitors. Process Biochem 136:282–291. https://doi.org/10.1016/j.procbio.2023.12.011
Contreras-Padilla M, Gutiérrez-Cortez E, Valderrama-Bravo MC, Rojas-Molina I, Espinosa-Arbeláez DG, Suárez-Vargas R et al (2012) Effects of drying process on the physicochemical properties of nopal cladodes at different maturity stages. Plant Foods Hum Nutr 67:44–49. https://doi.org/10.1007/s11130-011-0265-x
Article CAS PubMed Google Scholar
Coria-Cayupán YS, Ochoa MJ, Nazareno MA (2011) Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive-compound contents during ripening process. Food Chem 126:514–519. https://doi.org/10.1016/j.foodchem.2010.11.033
Costanzo G, Vitale E, Iesce MR, Naviglio D, Amoresano A, Fontanarosa C, Spinelli M, Ciaravolo M, Arena C (2022) Antioxidant properties of pulp, peel and seeds of Phlegrean Mandarin (Citrus reticulata Blanco) at different stages of fruit ripening. Antioxidants 11:187. https://doi.org/10.3390/antiox11020187
Article CAS PubMed PubMed Central Google Scholar
Daniloski D, D’Cunha NM, Speer H, McKune AJ, Alexopoulos N, Panagiotakos DB et al (2022) Recent developments on Opuntia spp., their bioactive composition, nutritional values, and health effects. Food Biosci 47:101665. https://doi.org/10.1016/j.fbio.2022.101665
Duque L, Bravo K, Osorio E (2017) A holistic anti-aging approach applied in selected cultivated medicinal plants: a view of photoprotection of the skin by different mechanisms. Ind Crops Prod 97:431–439. https://doi.org/10.1016/j.indcrop.2016.12.059
Dzah CS, Kpodo FMK, Asante-Donyinah D, Boateng NAS (2024) The influence of Morinda citrifolia fruit maturity level, parts and storage length on total phenols, ascorbic acid, antioxidant activity and ethylene gas emission. Food Chem Adv 4:100599. https://doi.org/10.1016/j.focha.2023.100599
El-Mostafa K, El Kharrassi Y, Badreddine A, Andreoletti P, Vamecq J, El Kebbaj MS et al (2014) Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 19:14879–14901. https://doi.org/10.3390/molecules190914879
Article CAS PubMed PubMed Central Google Scholar
Ferreira RM, Flórez-Fernández N, Silva AS, Saraiva JA, Figueroa FL, Vega L et al (2024) Opuntia ficus-indica seed pomace extracts with high UV-screening ability in a circular economy approach for body lotions with solar protection. J Ind Eng Chem 130:456–467. https://doi.org/10.1016/j.jiec.2023.09.052
Figueroa-Pérez MG, Pérez-Ramírez IF, Paredes-López O, Mondragón-Jacobo C, Reynoso-Camacho R (2018) Phytochemical composition and in vitro analysis of nopal (Opuntia ficus-indica) cladodes at different stages of maturity. Int J Food Prop 21:1728–1742. https://doi.org/10.1080/10942912.2016.1206126
Filippone A, Casili G, Lanza M, Scuderi SA, Ardizzone A, Capra AP et al (2023) Evaluation of the efficacy of xyloglucan, pea protein and Opuntia ficus-indica extract in a preclinical model of psoriasis. Int J Mol Sci 24:3122. https://doi.org/10.3390/ijms24043122
Article CAS PubMed PubMed Central Google Scholar
Garcia-Jimenez A, García-Molina F, Teruel-Puche JA, Saura-Sanmartin A, Garcia-Ruiz PA, Ortiz-Lopez A, Rodríguez-López JN, Garcia-Canovas F, Munoz-Munoz J (2018) Catalysis and inhibition of tyrosinase in the presence of cinnamic acid and some of its derivatives. Int J Biol Macromol 119:548–554. https://doi.org/10.1016/j.ijbiomac.2018.07.173
Article CAS PubMed Google Scholar
Garcia-Jimenez A, Teruel-Puche JA, Garcia-Ruiz PA, Saura-Sanmartin A, Berna J, Rodríguez-López JN, Garcia-Canovas F (2018) Action of tyrosinase on caffeic acid and its n-nonyl ester. Catalysis and suicide inactivation. Int J Biol Macromol 107:2650–2659. https://doi.org/10.1016/j.ijbiomac.2017.10.151
Article CAS PubMed Google Scholar
Gąsowska-Bajger B, Wojtasek H (2024) Epigallocatechin and epigallocatechin-3-gallate are not inhibitors of tyrosinase. Bioorg Med Chem Lett 113:129976. https://doi.org/10.1016/j.bmcl.2024.129976
Article CAS PubMed Google Scholar
Ghani U, Çevik UA, Rudrapal M, Rakshit G, Kaplancıklı ZA (2024) Synthesis of thiadiazole derivatives as competitive inhibitors of α-glucosidase and tyrosinase. J Mol Struct 1307:138028. https://doi.org/10.1016/j.molstruc.2024.138028
Giraldo-Silva L, Ferreira B, Rosa E, Dias ACP (2023) Opuntia ficus-indica fruit: A systematic review of its phytochemicals and pharmacological activities. Plants 12:543. https://doi.org/10.3390/plants12030543
Article CAS PubMed PubMed Central Google Scholar
Glew RH, Ayaz FA, Sanz C, VanderJagt DJ, Huang HS, Chuang LT, Strnad M (2003) Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation. Food Chem 83:363–369. https://doi.org/10.1016/S0308-8146(03)00097-9
Gonzalez-Rivera ML, Barragan-Galvez JC, Gasca-Martínez D, Hidalgo-Figueroa S, Isiordia-Espinoza M, Alonso-Castro AJ (2023) In vivo neuropharmacological effects of neophytadiene. Molecules 28(8):3457. https://doi.org/10.3390/molecules28083457
Comments (0)