Long Short-Term Memory-Based Temporal Modeling for Carnosic Acid Peak Prediction in : A Deep Learning Approach, Biological Potential, and Molecular Docking

Abbaoui Z, Merzouki M, Oualdi I, Bitari A, Oussaid A, Challioui A, Touzani R, Hammouti B, Diño WA (2024) Alzheimer’s disease: in silico study of rosemary diterpenes activities. Curr Res Toxicol 6:100159. https://doi.org/10.1016/j.crtox.2024.100159

Berker KI, Güçlü K, Tor I, Apak R (2007) Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta 72:1157–1165. https://doi.org/10.1016/j.talanta.2007.01.019

Article  CAS  PubMed  Google Scholar 

Borghi M, Perez de Souza L, Tohge T, Mi J, Melandri G, Proost S, Martins MC, Al-Babili S, Bouwmeester HJ, Fernie AR (2022) High-energy-level metabolism and transport occur at the transition from closed to open flowers. Plant Physiol 190:319–339. https://doi.org/10.1093/plphys/kiac353

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borrás Linares I, Arráez-Román D, Herrero M, Ibáñez E, Segura-Carretero A, Fernández-Gutiérrez A (2011) Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. J Chromatogr A 1218(42):7682–7690

Article  PubMed  Google Scholar 

Borrás-Linares I, Stojanović Z, Quirantes-Piné R, Arráez-Román D, Švarc-Gajić J, Fernández-Gutiérrez A, Segura-Carretero A (2014) Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int J Mol Sci 15(11):20585–20606

Article  PubMed  PubMed Central  Google Scholar 

Crozier RW, Yousef M, Coish JM, Fajardo VA, Tsiani E, MacNeil AJ (2023) Carnosic acid inhibits secretion of allergic inflammatory mediators in IgE-activated mast cells via direct regulation of Syk activation. J Biol Chem 299:104571. https://doi.org/10.1016/j.jbc.2023.104571

Article  CAS  Google Scholar 

De Oliveira JR, Camargo SEA, de Oliveira LD (2019) Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J Biomed Sci 26:5. https://doi.org/10.1186/s12929-019-0499-8

Article  PubMed  PubMed Central  Google Scholar 

Ed-Daoudi R, Alaoui A, Ettaki B, Zerouaoui J (2023) Improving crop yield predictions in Morocco using machine learning algorithms. J Ecol Eng 24:141–150. https://doi.org/10.12911/22998993/162837

Article  Google Scholar 

Ed-Daoudi R, Alaoui A, Ettaki B, Zerouaoui J (2023) A predictive approach to improving agricultural productivity in Morocco through crop recommendations. Int J Adv Comput Sci Appl 14:325–332. https://doi.org/10.14569/IJACSA.2023.0140335

Article  Google Scholar 

Elansary HO, Szopa A, Kubica P, Ekiert H, El-Ansary DO, Al-Mana FA, Mahmoud EA (2020) Saudi Rosmarinus officinalis and Ocimum basilicum L. polyphenols and biological activities. Processes 8:446. https://doi.org/10.3390/pr8040446

Article  CAS  Google Scholar 

Erkan N, Ayranci G, Ayranci E (2008) Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem 110:76–82. https://doi.org/10.1016/j.foodchem.2008.01.058

Article  CAS  PubMed  Google Scholar 

Habtemariam S (2023) Anti-inflammatory therapeutic mechanisms of natural products: insight from rosemary diterpenes, carnosic acid and carnosol. Biomedicines 11:545. https://doi.org/10.3390/biomedicines11020545

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hossain MB, Rai DK, Brunton NP, Martin-Diana AB, Barry-Ryan C (2010) Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J Agric Food Chem 58(19):10576–10581

Article  CAS  PubMed  Google Scholar 

Ito T, Meyerowitz EM (2000) Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell 12:1541–1550. https://doi.org/10.1105/tpc.12.9.1541

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivanovic J, Misic D, Zizovic I, Ristic M (2012) In vitro control of multiplication of some food-associated bacteria by thyme, rosemary and sage isolates. Food Control 25:110–116. https://doi.org/10.1016/j.foodcont.2011.10.024

Article  Google Scholar 

Loussouarn M, Krieger-Liszkay A, Svilar L, Bily A, Birtić S, Havaux M (2017) Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol 175:1381–1394. https://doi.org/10.1104/pp.17.01183

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luis JC, Johnson CB (2005) Seasonal variations of rosmarinic and carnosic acids in rosemary extracts. Analysis of their in vitro antiradical activity. Span J Agric Res 3:106–112. https://doi.org/10.5424/sjar/2005031-125

Article  Google Scholar 

Mena P, Cirlini M, Tassotti M, Herrlinger KA, Dall’Asta C, Del Rio D (2016) Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Mol 21(11):1576

Article  Google Scholar 

Mersin B, İşcan GS (2022) Rosmarinus officinalis L. In: GürağaçDereli FT, Ilhan M, Belwal T (eds) Novel Drug Targets With Traditional Herbal Medicines. Springer, Cham, pp 155–170. https://doi.org/10.1007/978-3-030-92792-9_8

Chapter  Google Scholar 

Moreno S, Scheyer T, Romano CS, Vojnov AA (2006) Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 40:223–231. https://doi.org/10.1080/10715760500473865

Article  CAS  PubMed  Google Scholar 

Nieto G, Ros G, Castillo J (2018) Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis L.): a review. Medicines 5:98. https://doi.org/10.3390/medicines5030098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ntoanidou S, Kaplani A, Paloukopoulou C, Bazakos C, Patelou E, Doukidou L, Kotoula AA, Gklavakis E, Hatzilazarou S, Karioti A, Nianiou-Obeidat E (2024) Identification of high carnosic acid rosemary (Salvia rosmarinus Spenn.) genotypes through genetic diversity exploitation, chemical profiling, and transcriptomic approaches. Ind Crops Prod 214:118562. https://doi.org/10.1016/j.indcrop.2024.118562

Article  CAS  Google Scholar 

Ojeda-Sana AM, Repetto V, Moreno S (2013) Carnosic acid is an efflux pumps modulator by dissipation of the membrane potential in Enterococcus faecalis and Staphylococcus aureus. World J Microbiol Biotechnol 29:137–144. https://doi.org/10.1007/s11274-012-1166-3

Article  CAS  PubMed  Google Scholar 

Park J, Rho SJ, Kim YR (2019) Enhancing antioxidant and antimicrobial activity of carnosic acid in rosemary (Rosmarinus officinalis L.) extract by complexation with cyclic glucans. Food Chem 299:125119. https://doi.org/10.1016/j.foodchem.2019.125119

Article  CAS  PubMed  Google Scholar 

Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679. https://doi.org/10.1016/j.phytochem.2009.05.010

Article  CAS  PubMed  Google Scholar 

Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. https://doi.org/10.1006/abio.1999.4019

Article  CAS  PubMed  Google Scholar 

Quiroga PR, Nepote V, Baumgartner MT (2019) Contribution of organic acids to α-terpinene antioxidant activity. Food Chem 277:267–272. https://doi.org/10.1016/j.foodchem.2018.10.100

Article  CAS  PubMed  Google Scholar 

Rafya M, Zehhar N, Hafidi A, Benkhalti F (2022) Investigation of the high-order effect of Rosmarinus officinalis, Salvia officinalis, and Thymus satureioides essential oils with antibiotics on the membrane integrity of Salmonella typhi. J Essent Oil Bear Plants 25:939–952. https://doi.org/10.1080/0972060X.2022.2115824

Article  CAS  Google Scholar 

Rafya M, Hafidi A, Zehhar N, Benkhalti F (2023) Optimization of three-component essential oil-loaded nanoemulsions in combination using D-optimal mixture design. S Afr J Bot 159:472–481. https://doi.org/10.1016/j.sajb.2023.06.033

Article  CAS  Google Scholar 

Scheler U, Brandt W, Porzel A, Rothe K, Manzano D, Božić D, Papaefthimiou D, Balcke GU, Henning A, Lohse S, Marillonnet S (2016) Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast. Nat Commun 7:12942. https://doi.org/10.1038/ncomms12942

Article  CAS  Pub

Comments (0)

No login
gif