Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, Rubinsztein DC, Partridge L, Kroemer G, Labbadia J, Fang EF (2021) Autophagy in healthy aging and disease. Nat Aging 1:634–650. https://doi.org/10.1038/s43587-021-00098-4
Article PubMed PubMed Central Google Scholar
Bahreini E, Rezaei-Chianeh Y, Nabi-Afjadi M (2021) Molecular mechanisms involved in intrarenal renin-angiotensin and alternative pathways in diabetic nephropathy - a review. Rev Diabet Stud 17:1–10. https://doi.org/10.1900/rds.2021.17.1
Article PubMed PubMed Central Google Scholar
Cao TT, Chen HH, Dong Z, Xu YW, Zhao P, Guo W, Wei HC, Zhang C, Lu R (2017) Stachydrine protects against pressure overload-induced cardiac hypertrophy by suppressing autophagy. Cell Physiol Biochem 42:103–114. https://doi.org/10.1159/000477119
Article CAS PubMed Google Scholar
Cheng F, Zhou Y, Wang M, Guo C, Cao Z, Zhang R, Peng C (2020) A review of pharmacological and pharmacokinetic properties of stachydrine. Pharmacol Res 155:104755. https://doi.org/10.1016/j.phrs.2020.104755
Article CAS PubMed Google Scholar
Ding Y, Choi ME (2015) Autophagy in diabetic nephropathy. J Endocrinol 224:R15-30. https://doi.org/10.1530/joe-14-0437
Article CAS PubMed Google Scholar
Fierascu IC, Fierascu I, Baroi AM, Ungureanu C, Spinu S, Avramescu SM, Somoghi R, Fierascu RC, Dinu-Parvu CE (2023) Phytosynthesis of silver nanoparticles using Leonurus cardiaca L. extracts. Materials 16:3472. https://doi.org/10.3390/ma16093472
Article CAS PubMed PubMed Central Google Scholar
Guo QQ, Wang SS, Zhang SS, Xu HD, Li XM, Guan Y, Yi F, Zhou TT, Jiang B, Bai N, Ma MT, Wang Z, Feng YL, Guo WD, Wu X, Zhao GF, Fan GJ, Zhang SP, Wang CG, Cao LY, O'Rourke BP, Liu SH, Wang PY, Han S, Song XY, Cao L (2020) ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. Embo J 39:e103111. https://doi.org/10.15252/embj.2019103111
Hashemi M, Zandieh MA, Ziaolhagh S, Mojtabavi S, Sadi FH, Koohpar ZK, Ghanbarirad M, Haghighatfard A, Behroozaghdam M, Khorrami R, Nabavi N, Ren J, Reiter RJ, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M (2023) Nrf2 signaling in diabetic nephropathy, cardiomyopathy and neuropathy: therapeutic targeting, challenges and future prospective. Biochim Biophys Acta Mol Basis Dis 1869:166714. https://doi.org/10.1016/j.bbadis.2023.166714
Article CAS PubMed Google Scholar
He Z, Li P, Liu P, Xu P (2024) Exploring stachydrine: from natural occurrence to biological activities and metabolic pathways. Front Plant Sci 15:1442879. https://doi.org/10.3389/fpls.2024.1442879
Article PubMed PubMed Central Google Scholar
Huang S, Xu Y, Ge X, Xu B, Peng W, Jiang X, Shen L, Xia L (2019) Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabetic nephropathy through activating Akt/mTOR signaling pathway. J Cell Physiol 234:11200–11207. https://doi.org/10.1002/jcp.27770
Article CAS PubMed Google Scholar
Jin J, Shi Y, Gong J, Zhao L, Li Y, He Q, Huang H (2019) Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther 10:95. https://doi.org/10.1186/s13287-019-1177-1
Article CAS PubMed PubMed Central Google Scholar
Jung TW, Kim H, Park SY, Cho W, Oh H, Lee HJ, Abd El-Aty AM, Hacimuftuoglu A, Jeong JH (2022) Stachydrine alleviates lipid-induced skeletal muscle insulin resistance via AMPK/HO-1-mediated suppression of inflammation and endoplasmic reticulum stress. J Endocrinol Invest 45:2181–2191. https://doi.org/10.1007/s40618-022-01866-8
Article CAS PubMed Google Scholar
Kitada M, Ogura Y, Koya D (2016) Rodent models of diabetic nephropathy: their utility and limitations. Int J Nephrol Renovasc Dis 9:279–290. https://doi.org/10.2147/ijnrd.S103784
Article CAS PubMed PubMed Central Google Scholar
Kume S, Koya D (2015) Autophagy: a novel therapeutic target for diabetic nephropathy. Diabetes Metab J 39:451–460. https://doi.org/10.4093/dmj.2015.39.6.451
Article PubMed PubMed Central Google Scholar
Li B, Wu J, Li X (2013) Simultaneous determination and pharmacokinetic study of stachydrine and leonurine in rat plasma after oral administration of Herba Leonuri extract by LC-MS/MS. J Pharm Biomed Anal 76:192–199. https://doi.org/10.1016/j.jpba.2012.12.029
Article CAS PubMed Google Scholar
Liao L, Tang Y, Li B, Tang J, Xu H, Zhao K, Zhang X (2023) Stachydrine, a potential drug for the treatment of cardiovascular system and central nervous system diseases. Biomed Pharmacother 161:114489. https://doi.org/10.1016/j.biopha.2023.114489
Article CAS PubMed Google Scholar
Miao LL, Zhou QM, Peng C, Liu ZH, Xiong L (2019) Leonurus japonicus (Chinese motherwort), an excellent traditional medicine for obstetrical and gynecological diseases: a comprehensive overview. Biomed Pharmacother 117:109060. https://doi.org/10.1016/j.biopha.2019.109060
Article CAS PubMed Google Scholar
NCD-RisC, (2024) Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 404:2077–2093. https://doi.org/10.1016/s0140-6736(24)02317-1
Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, Mahaffey KW, Charytan DM, Wheeler DC, Arnott C, Bompoint S, Levin A, Jardine MJ (2019) SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 7:845–854. https://doi.org/10.1016/s2213-8587(19)30256-6
Article CAS PubMed Google Scholar
Perico N, Ruggenenti P, Remuzzi G (2017) ACE and SGLT2 inhibitors: the future for non-diabetic and diabetic proteinuric renal disease. Curr Opin Pharmacol 33:34–40. https://doi.org/10.1016/j.coph.2017.03.006
Article CAS PubMed Google Scholar
Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040
Article CAS PubMed Google Scholar
Pourghasem M, Shafi H, Babazadeh Z (2015) Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med 6:120–127
PubMed PubMed Central Google Scholar
Ravera M, Ratto E, Vettoretti S, Parodi D, Deferrari G (2005) Prevention and treatment of diabetic nephropathy: the program for irbesartan mortality and morbidity evaluation. J Am Soc Nephrol 16(Suppl 1):S48-52. https://doi.org/10.1681/asn.2004110957
Article CAS PubMed Google Scholar
Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q (2020) Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol 500:110628. https://doi.org/10.1016/j.mce.2019.110628
Article CAS PubMed Google Scholar
Safiri S, Karamzad N, Kaufman JS, Bell AW, Nejadghaderi SA, Sullman MJM, Moradi-Lakeh M, Collins G, Kolahi AA (2022) Prevalence, deaths and disability-adjusted-life-years (DALYs) due to type 2 diabetes and its attributable risk factors in 204 countries and territories, 1990–2019: results from the global burden of disease study 2019. Front Endocrinol 13:838027. https://doi.org/10.3389/fendo.2022.838027
Samsu N (2021) Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int 2021:1497449. https://doi.org/10.1155/2021/1497449
Article CAS PubMed PubMed Central Google Scholar
Selby NM, Taal MW (2020) An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab 22(Suppl 1):3–15. https://doi.org/10.1111/dom.14007
Servillo L, D’Onofrio N, Longobardi L, Sirangelo I, Giovane A, Cautela D, Castaldo D, Giordano A, Balestrieri ML (2013) Stachydrine ameliorates high-glucose induced endothelial cell senescence and SIRT1 downregulation. J Cell Biochem 114:2522–2530. https://doi.org/10.1002/jcb.24598
Article CAS PubMed Google Scholar
Su PP, Liu DW, Zhou SJ, Chen H, Wu XM, Liu ZS (2022) Down-regulation of Risa improves podocyte injury by enhancing autophagy in diabetic nephropathy. Mil Med Res 9:23. https://doi.org/10.1186/s40779-022-00385-0
Comments (0)